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Abstract

This paper explores exchange rate dynamics and the uncovered interest parity
(UIP) violation in the context of multiple shocks. Our key contribution lies in reveal-
ing that exchange rate dynamics emanate from the collective influence of different
shocks, in contrast to prevailing literature emphasizing the dominance of a single
shock. While verifying the unconditional UIP reversals, we are the first to show that
there is no significant evidence of conditional UIP reversal with an innovative test
method developed in this paper. Additionally, through rigorous mathematical proof,
we establish that conditional UIP reversal is not a prerequisite for unconditional UIP
reversal in models featuring a moving averaging representation. This insight relaxes
stringent prerequisites in earlier theoretical studies, offering broad applicability for
understanding reversal patterns in UIP and other asset returns.
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1 Introduction

The study of exchange rate movements is a central focus in the realm of international

economics. Pioneered by Eichenbaum and Evans (1995), a large body of literature has

been established to explore what drives exchange rate movements based on structural

vector autoregression (SVAR) models. However, the literature has not yet reached a

consensus on this issue and has proposed at least four competing explanations. Earlier

studies highlight the role of monetary shocks (e.g., Kim and Roubini 2000, Scholl and

Uhlig 2008, Kim et al. 2017, Rüth 2020). By contrast, Nam and Wang (2015), Klein and

Linnemann (2021), and Chahrour et al. (2023) argue that anticipated technology shocks

are predominant in explaining the exchange rate variations. Echoing the theoretical work

of Chen (2021), Eichenbaum et al. (2021) and Itskhoki and Mukhin (2021a), recent papers

(Georgiadis et al. 2021 and Jiang et al. 2021) point towards a special role of financial

shocks that affect exchange rates through their impacts on safe asset demand. More

recently, Schmitt-Grohé and Uribe (2022) ascribe much of the exchange rate volatility to

shocks that trigger remarkably persistent interest rate responses.

Although the literature is far from speaking in one voice about what factors drive

exchange rate dynamics, previous studies tend to highlight one of the competing expla-

nations by focusing on a single dominant shock. A potential drawback of focusing on

one shock at a time is the inherent risk that the effects of the identified shock may become

confounded with other shocks so that the shock highlighted as the primary driver of ex-

change rates in one study may exhibit correlation with, or even correspond to, the shock

emphasized in another paper. Additionally, the theoretical literature, exemplified by

Itskhoki and Mukhin (2021a), endeavors to construct a unified framework aligning un-

conditional empirical moments with theoretical moments conditional on a single shock.

Recent contributions, such as Itskhoki and Mukhin (2024), eliminate certain shocks as ex-

change rate drivers due to discrepancies between moments conditional on these shocks

(one at a time) and unconditional moments. The analytical procedure undertaken in It-

skhoki and Mukhin (2024) is valid under the assumption that the exchange rate as well as
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home and foreign interest rates are governed by a single shock, wherein the concurrence

of conditional and unconditional moments is presumed. However, such elimination can

be inappropriate when exchange rates are influenced by multiple shocks so that con-

ditional moments may diverge from unconditional moments. Critically, the literature

currently lacks empirical establishment of conditional moments and exploration of the

relationship between conditional and unconditional moments.

To crack these challenges, this paper makes the first endeavor to jointly identify

anticipated technology shocks, monetary shocks, safe asset demand shocks, and per-

sistent interest rate shocks and let them compete in one unified open-economy SVAR

framework. Our objectives encompass addressing several key research questions: Firstly,

does the movement of dollar exchange rates predominantly stem from a singular type

of shock, or is it influenced by the collective impact of multiple shocks? Secondly, how

does our identification strategy offer insights into the persisting puzzles surrounding ex-

change rates and interest rate parity, as assessed through conditional moments? Lastly,

can the examination of the relationship between conditional and unconditional moments

shed on existing theoretical studies?

We estimate a seven-variable SVAR model with a Bayesian approach using quarterly

data from 1975Q1 to 2018Q4. Our empirical analysis yields the following novel findings.

First, the dynamics of the dollar exchange rates result from the combined influence of

all identified shocks. This challenges the perspective that exchange rates are primarily

influenced by a single type of shocks, whether it be financial shocks as proposed by

Itskhoki and Mukhin (2021a), technology shocks according to Chahrour et al. (2023), or

main foreign exchange rate shocks as identified by Miyamoto et al. (2023). Anticipated

technology shocks and persistent interest rate shocks contribute more to exchange rate

dynamics than monetary shocks and safe asset demand shocks. Nevertheless, safe asset

demand shocks were responsible for much of the dollar appreciation during the global

financial crisis in 2008.

Second, we illustrate that exchange rates respond to structural shocks in distinct

3



patterns with disparate magnitudes. The impulse responses of exchange rates resem-

ble a horizontal J-curve following anticipated technology shocks, an S-curve following

monetary shocks, a hump-shaped curve following safe asset demand shocks, and an L-

curve following persistent interest rate shocks. Exchange rates appreciate and overshoot

immediately in response to safe asset demand shocks. By contrast, the overshooting

of exchange rates is delayed for more than two years following the other three shocks.

The observation that more persistent shocks play a pivotal role in elucidating exchange

rate movements aligns with the perspective of Engel and West (2005), who contend that

the near-random walk behavior of exchange rates can be rationalized by the persistent

movements in macro fundamentals.

Third, we provide complementary empirical evidence to evaluate whether uncov-

ered interest parity (UIP), both conditional and unconditional, holds between the US and

the G6 countries. Using a dynamic version of the Fama (1984) regression following Engel

(2016), we confirm that unconditional UIP fails and the co-movement between foreign ex-

change excess returns and cross-country interest differentials changes direction as time

horizon extends. Moreover, we propose a novel approach to test the conditional UIP

by implementing the dynamic Fama regressions with counterfactual data and model-

implied conditional forecasts. Our new test indicates that the UIP fails conditional on

monetary shocks and persistent interest rate shocks. There is no sufficient evidence to

reject the conditional UIP reversal at long horizons.

In light of the empirical evidence, we further explore the feasibility of constructing

a theoretical model demonstrating unconditional UIP reversal without exhibiting such

reversal under any exogenous shocks. We mathematically prove that the unconditional

dynamic Fama coefficients are a weighted average of conditional Fama coefficients, with

the weight determined by the shocks’ contribution to the cross-country interest rate dif-

ferential.1 Consequently, unconditional UIP reversal can occur when Fama coefficients

1Prior research typically asserts the significance of a shock in elucidating exchange rate dynamics
when the moments conditional on a shock align with the unconditional dynamics. For instance, Itskhoki
and Mukhin (2021a) argue that “if financial shocks play an important role in the dynamics of the exchange
rate, the model reproduces a negative unconditional Fama coefficient.” Our analysis challenges this notion,
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conditional on two shocks have different signs without a discernible reversal pattern.

This insight is applied to recent studies by Valchev (2020) and Candian and De Leo

(2023). Valchev (2020) establishes conditions for unconditional UIP reversal, reliant on

active monetary and persistent fiscal policy in an open-economy New Keynesian model,

which our findings demonstrate can be relaxed if conditional UIP reversal is not a pre-

requisite. Similarly, Candian and De Leo (2023)’s proposed mechanism for both con-

ditional and unconditional UIP reversal, driven by over-extrapolative belief and shock

mis-perception, is adapted in our analysis. We show that replacing their shocks with the

four shocks from our empirical study requires only one of the over-extrapolative belief

and shock mis-perception to generate unconditional UIP reversal. In essence, our pa-

per offers a new explanation for UIP reversal through the collective impact of multiple

shocks, eliminating the reliance on a specific shock for its occurrence.

The overview of the literature helps place our contributions in context. First, we are

the first that jointly identifies anticipated technology shocks, monetary shocks, safe asset

demand shocks, and persistent interest rate shocks in an open-economy SVAR model.

The innovative approach enables us to disentangle the effects of each of these shocks

and their transmission channels under a unified framework with different sources of

prior information. Wolf (2020) cautions the literature about the potential emergence of

the ”masquerading problem” in the SVAR model when employing a set identification

approach to identify a single shock.

However, little efforts have been made to disentangle the effects of anticipated tech-

nology shocks and persistent interest rate shocks when identifying monetary shocks in

open-economy frameworks. Our paper bridges this gap in the literature.

Second, while the literature considers the failure and reversal of UIP as uncondi-

tional moments in data, the empirical literature noticeably lacks comprehensive discus-

sions on the dynamic pattern of UIP violation and reversal conditional on shocks. We

introduce a novel method to examine conditional UIP by applying the dynamic Fama

asserting that conditional Fama coefficients can closely resemble their unconditional counterparts when
conditioned shocks are influential on interest rate differentials rather than exchange rates.
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regressions proposed by Engel (2016) to counterfactual data and conditional forecasts.2

In contrast to the existing UIP test relying on excess return impulse responses following

Eichenbaum and Evans (1995), aligns more coherently with the unconditional UIP test

and is conceptually consistent with the conditional dynamic coefficients evaluated in

some prior theoretical studies (Valchev 2020 and Candian and De Leo 2023). Moreover,

our methodology is readily applicable to producing dynamic Fama coefficients (and

other moments) conditional on multiple shocks simultaneously. This aspect, largely

overlooked in prior empirical literature, proves valuable in assessing whether the ob-

served unconditional moments can be generated by the convolution of multiple shocks.

Third, in contrast to prevailing theoretical literature (Valchev 2020, Na and Xie 2022,

Candian and De Leo 2023), which often elucidates unconditional UIP reversal by de-

signing mechanisms to achieve it conditional on specific shocks, our contribution lies

in establishing, through mathematical proof, that unconditional Fama coefficients are

weighted averages of conditional Fama coefficients. As a result, conditional UIP reversal

is not a prerequisite for unconditional UIP reversal. Utilizing models (with variations)

derived from Valchev (2020) and Candian and De Leo (2023), we demonstrate that the

stringent conditions outlined in earlier models can be relaxed when conditional UIP is

not a compulsory precursor to unconditional UIP reversal.

While our primary focus is on dynamic Fama coefficients, our analytical frame-

work can be extended to establish various other conditional moments related to the

exchange rate disconnect puzzles documented in Itskhoki and Mukhin (2021a).3 Nu-

merous prior studies have concentrated on generating theoretical conditional moments

to match with empirical unconditional moments (Itskhoki and Mukhin 2021a, Itskhoki

and Mukhin 2021b). However, we posit that these models, while valuable, are not im-

2We demonstrate that estimating the conditional dynamic Fama coefficients is equivalent to adopting
an instrumental variable approach akin to Barnichon and Mesters (2020). Our method surpasses the per-
formance of Barnichon and Mesters (2020) when the IVs are valid and the effects of shocks are transitory.

3The delayed overshooting puzzle represents one of the extensively investigated conditional moment
puzzles in the literature, as evidenced by studies such as Bacchetta and Van Wincoop (2021) and Müller
et al. (2021). However, there is a notable gap in the literature concerning the establishment of empirical
facts regarding other crucial moments conditional on shocks.
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perative for explaining exchange rate puzzles. Considering that these puzzles can be

contributed by multiple shocks, we advocate for further research aimed at aligning em-

pirical (un)conditional moments with their (un)conditional counterparts respectively in

theoretical models. The analytical tools developed in this paper can be instrumental in

undertaking such investigations.

The remainder of the paper is structured as follows. Section 2 sets out the ba-

sic SVAR framework, explains the estimation approach, and outlines the identification

strategy. Section 3 describes the data set used in estimation and presents the conditional

behavior of exchange rate dynamics, including the shock contributions, the impulse re-

sponses and the structural scenario analysis. Section 4 documents the evidence of the

conditional and unconditional UIP. Section 5 delves into a discussion of the theoretical

implications stemming from our empirical findings regarding UIP dynamics. Section

6 provides extensive robustness checks regarding model specifications, identification

schemes, and alternative estimation methods. Overall, our main results from the bench-

mark model are robust with these variations. Section 7 concludes.

2 Empirical strategy

Our starting point is an SVAR model of the form:

yt =
K

∑
i=1

Biyt−i + ut, (1)

where Bi denotes the coefficient matrix, ut corresponds to the regression residuals with

the variance-covariance matrix Var(ut) = Σ, and yt is a vector that contains endogenous

variables measured at the quarterly frequency: US TFP, US real gross domestic product

(GDP), the US short-term interest rate, US real stock prices, nominal exchange rates,

foreign GDP, and the foreign interest rate. The nominal exchange rate is expressed as

the US dollar price of foreign currency so that a decrease in the exchange rate indicates

dollar appreciation. We take an aggregate of G7 excluding the US as the foreign country
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and employ a lag of four quarters in our benchmark model.

The model is estimated with Bayesian methods using an uninformative conjugate

normal-inverse Wishart prior to infer the joint distribution of the parameters (B1, B2, ..., BK, Σ).

The identification of the structural shocks amounts to searching for a mapping, A, be-

tween the regression residuals, ut, and the structural shocks, εt, so that ut = Aεt. By def-

inition, matrix A, also known as the impact matrix, must satisfy Σ = E(Aεtε
′
t A′) = AA′.

However, as is well known in the literature, these equations alone are insufficient to solve

a unique impact matrix. As a result, auxiliary restrictions on matrix A are necessary to

identify the structural shocks. The goal of our empirical exercise is to establish a unified

framework to encompass four competing views that the literature has proposed to ex-

plain exchange rate movements. With this goal in mind, we jointly identify anticipated

technology shocks, monetary shocks, safe asset demand shocks, and persistent interest

rate shocks by imposing restrictions on impulse responses, the forecast error variance

decompositions, and the historical decompositions during selected periods.

We proceed through three sequential steps in the following order. In the first step,

we identify anticipated technology shocks, assuming that technology remains exogenous

in the long run. In the second step, we identify monetary and safe asset demand shocks

conditional on technology shocks, with the assumption that they have limited effects on

technology in the long term. In the third step, we identify persistent interest rate shocks

— those with lasting effects on interest rates but orthogonal to shocks identified in prior

steps. This final step ensures that the identification of this shock does not preclude the

other three shocks from exerting long-term impacts on interest rates.

2.1 Anticipated technology shocks

We follow the method proposed by Kurmann and Sims (2021) to identify antici-

pated technology shocks, which are shocks that have long-run effects on total factor

productivity (TFP). To do so, we construct a linear combination of reduced-form inno-

vations that maximizes its contribution to the variance of TFP forecast errors at a long
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horizon.4 Specifically, suppose the SVAR model can be expressed in a moving average

representation:

yt =
∞

∑
i=0

Ciut−i =
∞

∑
i=0

Ci Aεt−i, (2)

where Ci is the moving average coefficient matrix. Anticipated technology shocks can be

identified by maximizing its contribution to the forecast error variance of TFP at horizon

H:

aj = arg max
e
′
k

(
∑H

τ=0 Cτaja
′
jC
′
τ

)
ek

e′k
(

∑H
τ=0 CτΣC′τ

)
ek

, (3)

where ek is the selection vector with one in the k-th place and zeros elsewhere and aj

corresponds to the j-th column of the impact matrix A. Following Kurmann and Sims

(2021), H is set as 80 in our benchmark model. Without loss of generality, TFP is ordered

the first in the vector of endogenous variables, yt, and the anticipated technology shock

is ordered last in the shock vector, εt, (i.e., k = 1 and j = 7) to facilitate introducing other

shocks in the following steps.

2.2 Monetary shocks and safe asset demand shocks

We identify monetary shocks and safe asset demand shocks by imposing traditional

sign restrictions on the impulse responses and narrative sign restrictions on the struc-

tural shocks and the historical decompositions. For both shocks, we only impose sign

restrictions for the quarter when the shock occurs. We remain agnostic about how the

4Another prevalent approach for identifying anticipated technology shocks is the Barsky and Sims
(2011) method, which assumes that such shocks do not affect TFP on impact but contribute to most of
its future variations. However, recent studies by Cascaldi-Garcia (2017) and Kurmann and Sims (2021)
suggest that the effects of the Barsky and Sims (2011) anticipated technology shocks are not robust to
data revision because the widely-used Fernald (2014) TFP series may suffer from cyclical mismeasurement
errors of the true technology level. The Kurmann and Sims (2021) approach is devised to address this issue.
Nevertheless, we find that the results from our analysis are mostly robust when we identify anticipated
technology shocks using the Barsky and Sims method.

9



shocks may propagate beyond the current quarter and do not prohibit situations where

the general equilibrium effects may bring about sign reversals in subsequent quarters.

In line with most open-economy structural models, we assume that a contractionary US

monetary shock may lead to a decrease in domestic output and stock prices, an appreci-

ation of the dollar exchange rate, and an increase in the domestic interest rate.

The safe assets are typically appraised as a reliable store of value that contains

almost no uncertainty about future payments. As the safe assets provide liquidity service

and relax investors financial constraints, they are highly demanded during the episodes

of global financial instability. Jiang et al. (2021) demonstrate that safe asset demand

shocks explain substantial variances in the dollar exchange rate. In light of this, safe asset

demand shocks are financial shocks that would raise the demand for liquidity services,

push up the wedge between foreign yields and US treasury yields, and appreciate dollar

exchange rates as the US treasury is the world’s provider of the safe assets. Accordingly,

we identify safe asset demand shocks by imposing the sign restrictions that a stronger

safe asset demand causes a decrease in domestic interest rates and stock prices, and a

dollar appreciation as predicted by the structural model in Chen (2021).

Even with sign restrictions on impulse responses, the task of achieving an econom-

ically plausible identification of safe asset demand shocks and monetary shocks is not

trivial. The main challenge is that their effects can be similar to the dynamics elicited by

other demand-type shocks (e.g., consumers preference shocks and government spend-

ing shocks). In addition, as argued by Antolı́n-Dı́az and Rubio-Ramı́rez (2018), tradi-

tional sign restrictions on impulse responses do not guarantee that the implied shock

realizations are consistent with the narrative account of key historical episodes. In con-

sideration of the vulnerability of traditional sign restrictions approach, we attempt to

improve the inference of SVAR by complementing traditional sign restrictions on im-

pulse responses with a set of narrative sign restrictions that restrict the signs of realized

shocks and the historical decompositions to be compatible with the established narrative

account of key historical episodes following the approach of Antolı́n-Dı́az and Rubio-

10



Ramı́rez (2018) and Giacomini et al. (2021).

Although there is a lack of agreement in the literature upon the entire time series

of monetary shocks, it is possible to find some events upon which there is an agree-

ment that important monetary policy shocks happened by a majority of researchers. For

instance, Antolı́n-Dı́az and Rubio-Ramı́rez (2018) make an important contribution by es-

tablishing a collection of most compelling and uncontroversial monetary shock episodes

by cross-checking the Romer and Romer (1989) chronology, the updated Romer and

Romer (2004) Greenbook residual series, the Gürkaynak et al. (2005) monetary shock se-

ries, and the FOMC meeting transcripts. Accordingly, we restrict the signs of monetary

shock realizations to be consistent with the monetary policy chronology documented in

Antolı́n-Dı́az and Rubio-Ramı́rez (2018). We additionally assume that the stance of mon-

etary policy was expansionary in 2008Q4 as the Fed cut the Federal Funds rate to zero

for the first time in the history which is supported by the conventional monetary policy

factor derived in Swanson (2021). Considering that the Volcker reform in 1979Q4 was

the most apparent instance of an exogenous monetary shock in the postwar period, we

further assume that monetary shocks make larger contributions to domestic short-term

interest rates than other shocks during this period.5

For safe asset demand shocks, we impose narrative sign restrictions during specific

episodes characterized by stock market crashes that triggered surges in the demand for

safe assets. The selected episodes include ”Black Friday” in 1987Q4, the bursting of

the dot-com bubble in 2000Q4, the Global Financial Crisis in 2008Q3 and 2008Q4, the

Euro Sovereign Debt Crisis of 2011Q3, and the Brexit referendum of 2016Q2. Figure 1

illustrates the borrowing rate, as defined by Cesa-Bianchi and Sokol (2022) as the sum

of a 10-year government bond rate and the corporate bond spread from Gilchrist and

Zakrajšek (2012). This rate is closely tied to shifts in financial conditions. Additionally,

5Antolı́n-Dı́az and Rubio-Ramı́rez (2018) established eight monetary policy episodes in their chronol-
ogy. Of the eight periods, April 1974 is not in our sample period. December 1990 episode is also excluded
considering that the easing monetary policy can be a response to the Gulf War. Another reason for ex-
cluding this episode is that the policy change was announced on Dec 18, 1990 towards the end of the
year.
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we display the treasury basis, as defined by Jiang et al. (2021) as the yield gap between

U.S. government bonds and currency-hedged foreign government bonds, which serves

as a key indicator of the demand for U.S. dollar-denominated safe assets. Notably, most

of the selected periods align with peaks in the borrowing rate and troughs in the trea-

sury basis. We further assume that safe asset demand shocks contribute more to stock

prices than other shocks in 2008Q4 when financial conditions deteriorated drastically as

indicated by the Romer and Romer (2017) global financial distress series, the Piffer and

Podstawski (2018) high-frequency gold prices, and the Cesa-Bianchi and Sokol (2022)

borrowing rate series.

Narrative Sign Restriction 1: Monetary shocks are contractionary in 1979Q4, 1988Q4,

and 1994Q1, and are expansionary in 1998Q4, 2001Q2, 2002Q4, and 2008Q4. For 1979Q4,

the monetary shock is the most important contributor to the movements of domestic in-

terest rates so that the absolute value of the contribution of the monetary shock is larger

than that of any other structural shock.

Narrative Sign Restriction 2: Safe asset demand shocks are stronger in 1987Q4,

2000Q4, 2008Q3, 2008Q4, 2011Q3, and 2016Q2. For 2008Q4, the safe asset demand shock

is the most important contributor to the movements of stock prices so that the absolute

value of the contribution of the safe asset demand shock is larger than that of any other

structural shock.

2.3 Persistent interest rate shocks

In the final step, we identify the shocks that trigger persistent shifts in interest rates,

such as exogenous factors that may affect the inflation rate target and the natural rate of

interest. It is noteworthy that our identification does not prohibit the shocks identified in

the preceding steps from inducing long-lasting interest rate effects since previous papers

allege that these shocks may contribute to natural interest rate movements (e.g., Laubach

and Williams 2003 for anticipated technology shocks, Beaudry et al. 2022 for monetary

shocks, and Del Negro et al. 2019 for safe asset demand shocks). The persistent inter-
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est rate shock that we attempt to identify is to encompass other factors that may cause

secular shifts in interest rates, such as foreign factors (Wynne and Zhang 2018), demo-

graphic factors (Eggertsson et al. 2019), and wealth inequality (Mian et al. 2021). Recent

papers (e.g., Müller et al. 2021, Zhang et al. 2021, and Schmitt-Grohé and Uribe 2022)

attest that exogenous shifts in the natural interest rate can contribute to exchange rates

substantially in open-economy dynamic stochastic general equilibrium (DSGE) models.

We identify persistent interest rate shocks by maximizing their contributions to in-

terest rate variations at the 80-th horizon conditional on the shocks identified in previ-

ous steps. Different from TFP, the interest rate is an endogenous variable that can be

contributed by a battery of shocks. When other shocks also contribute to the targeted

endogenous variable significantly, the variance-maximizing approach may misidentify

the shock of interest as demonstrated in Francis and Kindberg-Hanlon (2022). In this

scenario, Francis and Kindberg-Hanlon (2022) recommend ameliorating the variance-

maximizing approach by imposing additional sign restrictions. In this spirit, we restrict

that persistent interest rate shocks raise interest rates steadily for the first 30 quarters.

To sum up, building on the merits of several state-of-the-art SVAR identification ap-

proaches, we identify the four structural shocks based on a comprehensive set of gener-

ally agreed assumptions imposed on impulse responses, variance decompositions, shock

realizations, and historical decompositions. Our identification strategy is implemented

with the following algorithm:

Algorithm 1 1. We draw (B, Σ) from the normal-inverse-Wishart posterior distribution.

2. For each draw of the reduced-form parameters, we identify anticipated technology shocks

with the maximal forecast error variance decomposition approach and obtain a candidate

draw of impact matrix A. The last column of matrix A is determined by equation 3.

3. Rotate matrix A with an auxiliary matrix Q∗ in the form of:
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Q∗ =

 Q6×6 06∗1

01∗6 1

 , (4)

by drawing 6× 6 orthonormal matrix Q6×6. Apply the new impact matrix Ã = A ∗ Q∗

and keep the draws that satisfy both traditional and narrative sign restrictions for monetary

and safe asset demand shocks. The design of Q∗ matrix guarantees that the last column of

matrix A is fixed when rotating the impact matrix.

4. Repeat the above steps until 5000 draws have been obtained. For each draw of Ã matrix, we

identify the persistent interest rate shock by solving the third column of Ã to maximize its

contribution to US interest rate variations unexplained by the other identified shocks. We

check whether the restriction that this shock raises US interest rates for the first 30 quarters

is satisfied or not. We only retain the candidate draws of Ã matrices that satisfy the sign

restrictions.6

3 Shock contributions and effects

Our benchmark model is estimated using quarterly data from 1975Q1 to 2018Q2. We

follow the literature and utilize the Fernald (2014) quarterly TFP series, which corrects

for latent factor utilization by exploiting first-order conditions from a firm’s optimization

problem. We use the real GDP as the output measure and the one-year treasury bond

rate as the interest rate indicator. The one-year treasury rate allows us to compute

one-year excess returns for assessing the UIP condition. It is also less binded by the zero

lower bound than the official interest rate. However, we test the robustness of our results

with the official monetary policy rate and a variety of other interest rates. The real stock

prices are measured by the Standard & Poor’s 500 composite index deflated by the core
6In our benchmark model, 782 draws are kept to capture the posterior distributions of the parameters.

Francis and Kindberg-Hanlon (2022) combine the variance-maximization approach with the traditional
sign restriction method in a different way. They maximize the forecast error variance conditional on the
sign restrictions. When applying their approach to identify persistent interest rate shocks, the shocks
induce similar effects to our benchmark results but explain little interest rate variations.
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Consumer Price Index (CPI). Following Nam and Wang (2015), we take an aggregate of

the G6 countries as the foreign country and aggregate the bilateral nominal exchange

rate and foreign variables with the real GDP weights. All data, except for interest rate

data, are taken in log-levels (multiplied by 100 to express the impulse response functions

in percentage rates of variations). The details of our data construction and data sources

are relegated to the Online Appendix.

We estimate the benchmark model with 4 lags. A prerequisite for the standard

SVAR identification approach is that the information set contained in the SVAR model

spans that of the agents so that the structural shocks can be recovered.7 We perform the

fundamentalness test proposed by Forni and Gambetti (2014), which confirms that our

model contains sufficient information to recover the structural shocks as reported in the

Online Appendix. In this section, we begin by comparing the contributions of the four

identified shocks to provide insights into their relative importance. Next, we present

the impulse responses to discuss the effects of the identified shocks, with a particular

focus on exchange rates. Additionally, we investigate how the structural shocks transmit

through the interest rate channel based on the structural scenario analysis of Antolin-

Diaz et al. (2021) and Breitenlechner et al. (2022).

3.1 The contributions of the structural shocks

Figure 2 reports the posterior means along with the 68% and 90% confidence inter-

vals for each shock’s contribution to the endogenous variables at various horizons. The

mean estimates suggest that the four shocks collectively account for approximately 85%

of the variation in the US variables and around 75% of the volatility in exchange rates

and foreign variables at a 30-quarter horizon. Given that the identified shocks explain

most of the variation in all endogenous variables, our partial identification strategy does

7The standard SVAR identification method assumes that the structural shocks can be expressed as the
linear combinations of the residuals of the linear projection of a vector of variables onto their past values.
Chahrour and Jurado (2022) and Plagborg-Møller and Wolf (2022) relax this assumption to some extent
by showing that the shocks can still be identified (but with more sophisticate procedure) when they are
spanned by current, past, and future values of the observed macro variables.
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not leave out any essential shocks, at least in the long run.

Our central evidence stems from the forecast error variance decomposition of the

exchange rate, which shows that exchange rate dynamics are not dominated by a sin-

gle type of shocks. Anticipated technology shocks and persistent interest rate shocks,

respectively, explain 31% and 21% of the variations at the 30th quarter.8 Safe asset de-

mand shocks contribute moderately to exchange rate movements. They are responsible

for 16% of immediate exchange rate dynamics, which becomes milder as forecast hori-

zons extend. This stands in contrast to the findings of Itskhoki and Mukhin (2021a), who

posit that financial shocks play a dominant role in accounting for exchange rate varia-

tions. The fundamental deviation arises from the fact that the success of Itskhoki and

Mukhin (2021a)’s model hinges on the assumption of highly persistent financial shocks,

a premise that our empirical results, as demonstrated in the next subsection, do not

support. However, consistent with Itskhoki and Mukhin (2021a), we find that monetary

shocks explain a small share, around 10%, of the exchange rate fluctuations.

The forecast error variance decompositions for other variables are standard, but they

exhibit several noteworthy features. First, anticipated technology shocks are committed

as the primary driver of long-run adjustments in TFP and GDP, as previously found in

Kurmann and Sims (2021), and stock prices, as shown in Beaudry and Portier (2006).

Second, both monetary shocks and persistent interest rate shocks are held accountable

for domestic interest rate movements, together contributing to over 70% of the variations

on impact. Compared to monetary shocks, persistent interest rate shocks explain more

variations in both domestic and foreign output. Third, safe asset demand shocks explain

a greater share of financial variables than macroeconomic variables in both domestic

and foreign economies, which aligns with our definition of safe asset demand shocks as

global financial shocks that push up the demand for liquidity services.

To evaluate the historical significance of various shocks to exchange rate fluctua-

8We also find that anticipated technology shocks are accountable for around 30% of real exchange rate
dynamics when nominal exchange rates are replaced with real exchange rates in the benchmark model.
This echoes corresponding estimates in Nam and Wang (2015) and Klein and Linnemann (2021).
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tions, we present the historical decompositions for nominal exchange rates in Figure 3.

The variance not explained by the four identified shocks is grouped into “other shocks”.

An inspection of Figure 3 suggests tha monetary shocks and persistent interest rate

shocks make substantial contributions to exchange rates during the mid-1980s. In con-

trast, anticipated technology shocks were the primary driver of exchange rate fluctua-

tions in the 1990s and early 2000s. This coincides with the development of information

technology and the sharp increase in the economic value of patents (Cascaldi-Garcia

and Vukotić 2022). We find a minor role of safe asset demand shocks in exchange rate

volatility prior to the year of 2000. However, its role has increased since then and makes

the most pronounced contribution to the dollar appreciation in 2008. This corroborates

the idea proposed by Chen (2021) and Jiang et al. (2021) that exchange rate dynamics

are primarily driven by safe asset demand shocks during the global financial crisis. In

summary, exchange rate dynamics originate from the combined influences of all four

identified shocks.

3.2 The effects of the structural shocks

The response of endogenous variables to one standard deviation of shocks is il-

lustrated in Figure 4, which displays the median responses with 68% and 90% confi-

dence limits shaded in dark and light areas, respectively. The figure clearly shows that

exchange rates respond to the structural shocks in distinct patterns and magnitudes.

Specifically, in the aftermath of a favorable anticipated technology shock, we observe an

exchange rate appreciation, resembling a horizontal J-curve with the maximal impact

occurring approximately two years after the shock. Additionally, anticipated technology

shocks have strong expansionary effects on domestic GDP and stock prices, which is

consistent with the notion of technology-driven economic boom. However, technology

shocks have negligible effects on both domestic and foreign interest rates, as shown in

Piffer and Podstawski (2018).

Following a monetary policy tightening, US interest rate shoots up by roughly 50
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basis points immediately, which levels off after two years. This has the effect of damp-

ening US GDP, devaluing US stock prices, and hiking foreign interest rates. Exchange

rates appreciate persistently in an S-shape, with the peak response cropping up over

three years after the shock. The causal evidence derived from our model lends support

to a delayed overshooting of exchange rates. Furthermore, our research shows that US

monetary shocks have moderately expansionary effects on foreign output, which may

occur due to the depreciation of foreign currency against the US dollar.9

Safe asset demand shocks induce small and short-lived effects on both domestic and

foreign output. An increase in the demand for safe assets, such as treasury securities,

may reflect an elevated uncertainty in the global financial market, which triggers an

immediate and sharp decline in stock prices. Both domestic and foreign interest rates

decline as central banks systematically respond to the deteriorating economic and finan-

cial conditions. When investors endogenously fly to safety and pour capital into the

US market, the dollar exchange rate appreciates in a hump-shaped pattern. It is worth

noting that exchange rates overshoot immediately, with the largest response occurring

within a quarter after the shock. The fresh empirical evidence that we add to the existing

literature is that the exchange rate effects of safe asset demand shocks are more transient

than predicted by the general equilibrium model of Chen (2021) and Eichenbaum et al.

(2021).

Persistent interest rate shocks lead to sustained increase in US interest rates for more

than 30 quarters, which unsurprisingly depresses the stock market, triggers foreign eco-

nomic recessions, and appreciates dollar exchange rates. The exchange rate responses

are persistent and resemble an L-shape. Surprisingly, the shock elicits transient expan-

sionary effects on domestic GDP, which is contrary to the conventional wisdom that an

interest rate hike may depress the aggregate demand of the economy.10 Furthermore,
9As discussed in Iacoviello and Navarro (2019), models of international interest rate transmission

typically suggest that the US monetary policy spills over to foreign economies through various channels,
including the trade channel, the capital flow channel and the exchange rate channel. However, our results
evince that the exchange rate channel dominates, as it implies expansionary spillover effects, while the
other channels suggest the opposite effects.

10One way to rationalize this empirical finding is to appeal to the imperfect information models. Eco-
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foreign interest rate responses are muted to persistent interest rate shocks, which inti-

mates that the interest rate spillovers can be perplexing and can occur through divergent

channels. On the one hand, the foreign central bank needs to lower its policy interest rate

when confronting weaker GDP growth. On the other hand, the fear of capital outflow

may impose upward pressure on foreign interest rates. The opposite effects through

various channels may counteract each other.

In order to better understand the effects of identified shocks through the domestic

interest rate channel, we conduct a structural scenario analysis of Antolin-Diaz et al.

(2021) and Breitenlechner et al. (2022) to “shut down” the channel. The scenario analy-

sis involves forecasting the effects of a shock conditional on the scenario when another

offset shock leads to a certain path of the targeted variable. Specifically, we investigate

the effects of anticipated technology shocks, safe asset demand shocks, and persistent

interest rate shocks conditional on a sequence of US monetary policy shocks that coun-

teract the effects on the domestic interest rates. The results of this policy counterfactual

are presented as red dashed lines in Figure 4.

Upon comparing the structural scenario analysis with the impulse responses, we

observe that the interest rate channel plays a more critical role in transmitting persistent

interest rate shocks than other shocks. In the absence of the domestic interest rate chan-

nel, persistent interest rate shocks exhibit negligible effects on domestic variables and

exchange rates, but have significant and long-lasting effects on foreign variables. This

may be due to exogenous factors that persistently shift interest rates originating from the

foreign economy, which lowers foreign natural rates of interest but raises the US rate.11

nomic agents need to learn what factors contribute to the increase in domestic interest rates over time.
Initially, agents may interpret the persistent interest rate hike as a signal of strong aggregate consumption
demand, as suggested by the Euler Equation, and expand their expenditure accordingly. However, as
additional economic information is released, they soon learn the true economic state and cease expand-
ing their expenditure once they recognize that the factor enhancing the interest rate level is not strong
consumption demand.

11For example, foreign output growth shocks is a possible candidate for such a shock. In a simple
two-country New Keynesian open-economy framework of Clarida et al. (2002), the domestic natural rate
of interest, r̄rt ,is determined by both the domestic potential output growth expectation, Et∆ȳt+1, and
the foreign output growth expectation Et∆y∗t+1. As formalized in equation 51 of Clarida et al. (2002),
r̄rt = σ0Et∆ȳt+1 + κ0Et∆y∗t+1, where σ0 = σ− γ(σ− 1), κ0 = γ(σ− 1), σ > 0 denotes the inverse of the
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When the domestic interest rate is allowed to respond, the spill-back effects of higher

US rates on foreign country counteract the direct effects of the factor on foreign interest

rates, as displayed in the structural scenario analysis. This leads to less significant total

effects on foreign variables, as shown by the impulse responses (in solid lines).

4 Uncovered interest parity

One central hypothesis in most international models of exchange rate determination

is the UIP condition. The UIP condition postulates that there is no arbitrage in the

international asset market, which means that the expected returns on default-free assets

should be equalized across countries. However, extensive literature has shown that this

key condition may not hold in the data. In particular, countries with higher interest rates

tend to have higher expected returns, resulting in a substantial share of excess returns

being predictable. Consequently, investors can benefit from investing the higher interest

rate currency, as the interest differential is magnified by an exchange rate appreciation.

This empirical regularity is known as the “UIP puzzle”.

Engel (2016) shows that the correlation between foreign exchange excess returns and

the cross-country interest rate differentials reverses sign at long horizons, with contem-

poraneous high interest rate differentials predicting negative excess returns at horizons

from four to seven years. In this section, we seek to provide further empirical evidence

to explore the UIP puzzle and its sign reversal anomaly. To achieve this, we first im-

plement the procedure developed by Engel (2016) to test unconditional UIP within our

SVAR model. We then investigate the UIP conditional on identified shocks and examine

whether the UIP violation depend on the shocks at play. Finally, we illustrate through

a behavioral New Keynesian open-economy model that the inherent characteristic of

shock-dependent UIP failure may help explain the observed occurrence of unconditional

UIP reversal.

intertemporal substitution elasticity, and 0 < γ < 1 represents the share of home spending on foreign
countries. It’s easy to verify that σ0 is always positive, while κ0 can be negative when σ < 1.
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4.1 Unconditional UIP

To investigate the UIP condition, we define the one-year excess return from investing

in the foreign bond from period t to the year after (period t + 4) in terms of the US

currency as:

ρt,4 ≡ (i∗t − it) + (st+4 − st), (5)

where (i∗t − it) is the foreign less domestic interest rate differential and (st+4 − st) is

the year-to-year change in the logarithm of the nominal exchange rate.12 Following the

seminal work of Fama (1984), a vast literature tests the unconditional UIP by consider-

ing the famous Fama regression of the foreign exchange excess return on the interest

differential:

ρt,4 = α + β(i∗t − it) + et,4, (6)

where α = 0 and β = 0 if the UIP condition holds.

The standard UIP test of equation 6 can be extended to an arbitrary h-period ahead

horizon. Particularly, if Etρt,4 = 0 for any t, it follows that Etρt+h,4 = 0 for any h when

applying the law of iterated expectations. Therefore, the future one-year excess return

is unpredictable at all horizons under the UIP condition. We test this condition with a

series of regressions in a manner similar to the local projection in Jordà (2005):

ρt+h,4 = αh + βh(i∗t − it) + et+h,4, (7)

where h is non-negative with the initial Fama (1984) equation being the special case of

h = 0.

The upper left portion of panel (a) in Figure 5 displays our median estimates of βh

for h = 0, 1, 2, ......30 along with their 68% and 90% heteroscedastic-and-autocorrelation

12We also consider the annualized one-quarter excess return, ρt,1 ≡ (i∗t − it) + 4(st+1 − st), and find
that the results reported in this section are robust to this alternative definition.
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consistent corrected confidence limits using Newey-West standard errors. The median

estimates of βh reveal that the excess return on the high-interest currency is predicted to

increase at short horizons, but then switch direction at longer horizons. Specifically, the

estimates plummet from 2.4 on impact to -1.8 at the 30th quarter, indicating the reversal

of the UIP puzzle. The plotted 90% confidence interval confirms that the UIP puzzle and

its reversal are statistically significant.

4.2 Conditional UIP

4.2.1 Impulse responses of foreign exchange excess returns

While the failure of unconditional UIP generally emerges as a consensus in the ex-

isting literature, economists hold differing opinions on the conditional UIP in response

to the structural shocks.13 In this subsection, we investigate whether UIP holds condi-

tional on each of the four identified shocks. Following Eichenbaum and Evans (1995),

the existent literature assesses conditional UIP by inspecting the impulse responses of

the excess returns as formulated by:

∂ρt+h,4

∂εs
t

=
∂i∗t+h
∂εs

t
− ∂it+h

∂εs
t

+
∂st+h+4

∂εs
t
− ∂st+h

∂εs
t

, (8)

where εs
t represents the structural shock that the excess return responses are conditional

on.

Figure 6 presents in the top row the median impulse responses of one-year excess

returns, along with the 68% and 90% confidence sets. It is shown that only persistent

interest rate shocks entail significantly positive excess return responses at short horizons.

We further decompose the excess return responses into the responses of cross-country

interest differential, ∂(i∗t+h− it+h)/∂εs
t , and the responses of the exchange rate difference,

13For instance, Eichenbaum and Evans (1995) and Scholl and Uhlig (2008) argue that there is a con-
ditional UIP violation following a monetary shock, while Kim and Roubini (2000), Bjørnland (2009) and
Rüth (2020) detect no UIP violation for the same shock. Kim et al. (2017) suggest that “the UIP assumption
significantly fails during the Volcker era”, but “tends to hold in the post-Volcker era”.
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∂(st+h+4 − st+h)/∂εs
t . Figure 6 clearly manifests that the responses of the excess return

are primarily driven by the responses of the exchange rate difference. Even when our

estimation bears witness to significant interest differential responses, the excess return

responses are insignificant because the uncertainty around the exchange rate difference

is enormous. This calls into question the validity of the conventional conditional UIP

test based on the excess return responses obtained from Equation 8. In particular, a sig-

nificantly negative interest rate differential combined with an insignificantly negative ex-

change rate difference may not necessarily deliver a significantly negative excess return.

The substantial uncertainty associated with the exchange rate difference may dominate

and deteriorate the power of the conventional impulse-response-based conditional UIP

test.

The conventional conditional UIP test also has two other limitations. First, the test

based on the excess return responses is conceptually incongruent with the unconditional

UIP test, which relies on the estimation of Fama regression coefficients. The Fama re-

gression tests whether the excess returns can be predicted by cross-country interest rate

differentials, whereas the excess return responses evaluate whether a current shock can

modify the expectation of future excess returns. Thus, the results from the conditional

UIP test shed little insight into the unconditional UIP violation. Second, the excess re-

turn responses only allow for the investigation of UIP conditional on a single shock. As

far as we know, the SVAR literature has not attempted to analyze UIP conditional on

multiple shocks simultaneously, which may aid in assessing the model’s overall efficacy

in elucidating the UIP puzzle.14

14Assessing UIP conditional on multiple shocks can be conveniently implemented within the frame-
work of DSGE models by setting the variance of uninterested shocks to zero. Consequently, employing an
empirical approach to evaluate UIP conditional on multiple SVAR shocks can facilitate comparisons with
theoretical models.
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4.2.2 Conditional Fama regression

This paper proposes a new approach for assessing the conditional UIP. The method

involves estimating dynamic Fama regression models in a counterfactual scenario where

only the shock that the UIP is conditional on is allowed, while all other shocks are set to

zero.15 To explain the idea in detail, we express the moving average form of the SVAR

model as:

yt =
∞

∑
m=0

Θmεt−m, (9)

where εt−m refers to the vector of the structural shocks, and Θm = Cm A represents the

structural moving average matrix coefficients. To evaluate the UIP conditional on the k-

th shock, we construct the counterfactual data of the j-th endogenous variable by using

the following equation:

y(j,k)
t =

t−1

∑
m=0

Θ(j,k)
m ε

(k)
t−m + dj

t, (10)

where ε
(k)
t−m denotes the k-th structural shock in εt−m, Θ(j,k)

m is the j-th row and k-th

column of Θm, and dj
t represents deterministic terms. We test the conditional UIP by

estimating dynamic Fama regression equations:

ρ
(k)
t+h,4 = α

(k)
h + β

(k)
h (i∗(k)t − i(k)t ) + e(k)t+h,4, (11)

15This idea has found applications in assessing conditional dynamic Fama coefficients in DSGE models
by simply setting certain shock variance to zero as in Valchev (2020) and Itskhoki and Mukhin (2021a).
In the SVAR literature, Cormun and De Leo (2022) and Chahrour et al. (2023) employ a similar approach
to evaluate the contemporaneous Fama coefficients of β0. We were not aware of both papers during the
initial circulation of our draft and express gratitude to Pierre De Leo for bringing it to our attention. It’s
noteworthy that, unlike our study, both papers do not evaluate dynamic Fama coefficients, nor do they
explore the relationship between conditional and unconditional dynamic Fama coefficients as well as the
instrumental approach of Barnichon and Mesters (2020) as we do. The evaluation of counterfactual data by
Chahrour et al. (2023) may differ from our approach, given that their model does not assume invertibility.
In their model, endogenous variables also depend on the realization of future shocks.
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where ρ
(k)
t+h,4 = (i∗(k)t+h − i(k)t+h) + (s(k)t+h+4 − s(k)t+h).

16

The essence of estimating equation 11 is equivalent to estimating the relationship

between ρt+h and i∗t − it using an IV approach with εk
1, εk

2, ..., εk
t+h+4 as IVs simultane-

ously. In the first stage, the fitted values of ρt+h,4 and it − it are obtained from equation

10, while the estimation of equation 11 constitutes the second-stage estimation. The IV is

valid only if the residual of Equation 11 is uncorrelated with the conditioned shocks. Bar-

nichon and Mesters (2020) also propose using lag sequences of SVAR identified shocks

as instruments to estimate structural equations.17 However, as explained in Appendix

B, the approach proposed by Barnichon and Mesters (2020) relies on a single lag of the

shock to derive moment conditions at a time and thus may encounter the issue of weak

identification when the effects of shocks on explanatory variables are transient. In this

scenario, our method outperforms Barnichon and Mesters (2020) in terms of efficiency

as all lags of structural shocks are utilized simultaneously.

The conditional dynamic Fama regression is not limited to testing the UIP condi-

tional on a single shock. We can easily extend the exercise to multiple shocks. For

instance, to evaluate whether UIP holds conditional on the first two shocks , we can de-

rive the counterfactual data y(j,1,2)
t = ∑t−1

m=0 Θ(j,1)
m ε

(1)
t−m + ∑t−1

m=0 Θ(j,2)
m ε

(2)
t−m + dj

t and apply

it to the conditional Fama regression model. In an extreme case, the Fama regressions

conditional on all the seven shocks together are tantamount to the respective uncon-

ditional Fama regressions, given that the summation of the historical decompositions

recovers the data itself. Furthermore, in the next section, we will demonstrate that un-

16Similarly, we can assess conditional ex ante Fama coefficients through the estimation of Ẽtρ
(k)
t+h,4 =

α
(k)
h + β̃

(k)
h (i∗(k)t − i(k)t ) + e(k)t+h,4 where Ẽtρ

(k)
t+h,4 = (Ẽti

∗(k)
t+h − Ẽti

(k)
t+h) + (Ẽts

(k)
t+h+4 − Ẽts

(k)
t+h). We construct the

model-implied expectation of the j-th endogenous variable conditional on the k-th shock using Ẽty
(j,k)
t+h =

∑t+h−1
m=h Θ(j,k)

m ε
(k)
t+h−m + dj

t+h. The detailed results are available upon request.
17When contrasting Equation 11 with Barnichon and Mesters (2020), we interpret the Fama equations

as structural rather than reduced-form equations. In a standard model where UIP holds, all shocks
qualify as valid IVs. However, in recent literature that underscores endogenous deviations from UIP, as
seen in Itskhoki and Mukhin (2021b) and Devereux et al. (2023), the validity of IVs depends on whether
the conditioned SVAR shocks are independent from the shocks driving the deviation from UIP in the
theoretical model.
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conditional Fama coefficients can be expressed as weighted averages of conditional Fama

coefficients, where the weights are determined by the contributions of shocks to inter-

est rate differentials. Hence, the conditional UIP tests based on counterfactual data and

conditional forecasts are conceptually compatible with the unconditional UIP tests.

Figure 5 displays the Fama regression estimates conditional on each of the four

shocks individually and the four shocks together, which provides several noteworthy

observations. First, the Fama coefficients conditional on all four shocks together exhibit

a similar pattern as the unconditional Fama coefficients. This implies that the four identi-

fied shocks, when considered together, effectively encapsulate the empirical relationship

between foreign exchange excess returns and the interest rate differential witnessed in

the data.18

Second, the dynamic Fama coefficients are shock dependent at short horizons,

which exhibit distinctive patterns contingent on the specific shocks under consideration.

Among the four identified shocks, the rejection of UIP only occurs in response to mone-

tary and persistent interest rate shocks, with higher interest rates triggering a concurrent

upsurge in excess returns. This contrasts with the results of the impulse-response-based

UIP test, where we cannot reject UIP conditional on monetary shocks. Henceforth, our

test relying on conditional Fama coefficients may yield different conclusions from the

one based on the impulse response of excess returns.

Third, the conditional Fama coefficients are not significant for any of the four shocks

at long horizons so that the empirical findings do not provide adequate evidence to sup-

port the presence of conditional UIP reversal. Recent literature abounds with theoretical

models that evinces the sign reversal of UIP conditions across time horizons. Some

economists reconcile this phenomenon with models featuring deviation from full infor-

mation rational expectation (FIRE) models, including Candian and De Leo (2023), Kolasa

18Conditioning the estimated Fama coefficients on all four shocks simultaneously results in narrower
confidence bands compared to conditioning on a single shock. This reduction in band width is primarily
attributed to the uncertainty surrounding shock identification. The collective identification of four shocks
introduces less uncertainty than identifying each shock individually, especially when the identified shocks
together explain most of the variations in endogenous variables.
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et al. (2022), and Na and Xie (2022). Other scholarly investigations have proffered sup-

plementary mechanisms, such as convenience yields (Valchev 2020) and infrequent port-

folio adjustment (Bacchetta and Van Wincoop 2010 and Bacchetta et al. 2023). Despite

the diversity in the elucidated mechanisms, it is noteworthy that prevailing theoretical

explanations share a foundational commonality: the UIP reverses its sign conditional

on at least one shock, which is responsible for the sign reversal of unconditional UIP.
19 Considering that both the existing literature and our empirical examination are silent

about UIP reversal at long horizons, a scholarly imperative emerges to explore alterna-

tive theoretical frameworks capable of generating unconditional UIP reversal without

reliance on conditional UIP reversals.

5 Discussion

In this section, we formally investigate the conditions to construct a theoretical

model that demonstrates unconditional UIP reversal, yet refrains from exhibiting such

reversal conditional on any exogenous shocks. We aim to establish a set of necessary

and sufficient conditions for unconditional UIP reversal through the presentation of a

proposition and two lemmas.

Proposition 1: For any open-economy model that has an moving average represen-

tation (including SVAR model, international real business cycle model and New Keyne-

sian open economy model), the relationship between the unconditional dynamic Fama

coefficients, denoted as βh, and the Fama coefficients conditional on the k-th shock, ex-

pressed as β
(k)
h , is as follows:

19The only exception we identify is Engel (2016). While presenting a partial equilibrium model where
the reversal is solely unconditional and results from the convolution of monetary and liquidity shocks,
it lacks a comprehensive discussion on the conditions for unconditional UIP to manifest, not only in
theoretical models but also in empirical models.
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βh =
K

∑
k=1

β
(k)
h

Var(i∗t − it|εk
t )

Var(i∗t − it)
, (12)

where Var(i∗t − it|εk
t ) represents the variance of the cross-country interest rate differential

conditional on the k-th shock, εk
t , while Var(i∗t − it) represents the unconditional variance

with Var(i∗t − it) = ∑K
k=1 Var(i∗t − it|εk

t ). As the forecast horizon, h, approaches infinity,

both βh and β
(k)
h converge to zero.

The proof of Proposition 1 is detailed in Appendix C, which also contains the ex-

plicit form of Fama coefficients for DSGE models with both full-information rational

expectations and models with distorted beliefs. Proposition 1 asserts that the uncon-

ditional Fama coefficients can be defined as a weighted average of conditional Fama

coefficients, with the weights determined by the shocks’ contributions to the variance of

current interest rate differential.20

This proposition sheds light on empirical evidence from previous studies. Firstly,

studies such as Itskhoki and Mukhin (2021a) and Cormun and De Leo (2022) underscore

the significance of conditioned shocks in explaining exchange rate dynamics, particu-

larly when the dynamics of conditional UIP mirror the coefficients of unconditional UIP.

For example, Itskhoki and Mukhin (2021a) contend that ”if financial shocks play a cru-

cial role in the exchange rate dynamics, the model replicates a negative unconditional

Fama coefficient.” Proposition 1 challenges this perspective by demonstrating that the

dynamics of conditional UIP may take precedence when conditioned shocks are pivotal

20While Proposition 1 is employed to elucidate UIP violations, its relevance extends beyond the realm
of International Economics and can be applied to interpret the estimation of structural macro equations.
An illustrative example is found in the research of Carvalho et al. (2021), where it is argued that the bias
in ordinary least squares estimates (OLSE) of the Taylor rule is proportionate to the fraction of regressor
variance attributed to monetary shocks. This point can be illuminated using Proposition 1 as well. As
elucidated in the preceding section, conditional coefficients function as an IV estimator, proving consistent
and converging to the true value when conditioned shocks act as valid instrumental variables. In the
context of Taylor rule estimates, all shocks are valid IVs except for the monetary shock itself. Therefore,
Proposition 1 implies that the large sample bias of OLSE is the discrepancy between the true parameter
value and the coefficient conditional on monetary shocks, rescaled by the contribution of monetary shocks
to the regressor.
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in explaining interest rate dynamics rather than movements in exchange rates. Secondly,

Engel et al. (2022) contend that the relationship between interest rate differentials and

foreign exchange returns is time-varying. Proposition 1 implies that this variability in

parameters can emerge when the Fama coefficients are estimated to be shock-dependent,

and the contributions of shocks to interest rate differentials vary over time.

Most importantly, Proposition 1 has the potential to provide a generalized approach

to explaining unconditional UIP reversals. In previous theoretical studies, when con-

centrating on a single shock, unconditional UIP reversal is achieved by constraining

this shock to exert a dominant influence on interest rate dynamics, necessitating con-

ditional reversal in β
(k)
h to bring about βh reversal. In the subsequent discussion, we

illustrate that the pattern in conditional Fama coefficients can deviate from the uncon-

ditional Fama coefficients within a multi-shock framework. Proposition 1 suggests that

the unconditional Fama coefficients, βh, are expected to fall within the range defined by

Min(β
(1)
h , β

(2)
h , ......., β

(K)
h ) and Max(β

(1)
h , β

(2)
h , ......., β

(K)
h ). In light of this insight, Lemma 1

establishes a collection of necessary conditions that must be met to engender uncondi-

tional UIP reversal.

Lemma 1 Unconditional UIP reversal (β0 > 0 and ∃h0 > 0 so that βh0 < 0) can be

attained only if:

1. There exists at least one shock, εa
t that predicts a positive contemporaneous rela-

tionship between interest rate differential and foreign exchange excess returns (i.e.,

βa
0 > 0);

2. There exists at least one shock, εb
t , and a forecast horizon h0 > 0 that predicts a

negative relationship between interest rate differential and foreign exchange excess

returns at this horizon ((i.e., ∃ h0 > 0, βb
h0

< 0).

Lemma 1 demonstrates that unconditional UIP reversal is unattainable when all

shocks consistently forecast identical directional movements between interest rate differ-

entials and foreign exchange returns across all time horizons. Nevertheless, Proposition
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1 also imply that conditional UIP reversals are not obligatory for the occurrence of un-

conditional UIP reversal, except when researchers specifically focus on a single shock

and assign it a weight of 1. In this context, Lemma 2 furnishes a set of sufficient condi-

tions that facilitates the unconditional UIP reversal.

Lemma 2 Unconditional UIP reversal (β0 > 0 and ∃h0 > 0 so that βh0 < 0) can be

attained in a DSGE model if researchers are allowed to set the variance of exogenous

shocks and if:

1. There exists at least one shock, εn
t , which contributes to the variance of cross-

country interest rate differential (i.e. Var(i∗t − it|εn
t ) 6= 0) and predicts a negative

relationship between interest rate differential and foreign exchange excess returns

on impact (i.e., βn
0 < 0 ) and non-positive relationship for other horizons (βn

h ≤ 0

for h > 0).

2. There exists at least one shock, ε
p
t , which contributes to the variance of cross-

country interest rate differential (i.e. Var(i∗t − it|εp
t ) 6= 0) and predicts a positive

relationship between interest rate differential and foreign exchange excess returns

on impact (i.e., β
p
0 > 0 ) and non-negative relationship for other horizons (βp

h ≥ 0

for h > 0).

3. βn
h converges to 0 more slowly than β

p
h.

The first two conditions specify that the Fama coefficients conditional on εn
t and ε

p
t

have opposite signs, yet they do not exhibit reversals. Researchers can readily achieve

a positive β0 by imposing a substantial shock variance for ε
p
t . Condition 3 ensures the

existence of a horizon h0 > 0 where βh0 is negative, even in the presence of a large shock

variance for ε
p
t , as β

p
h0

becomes arbitrarily small, and βn
h0

is not.

The prior literature has often explained unconditional UIP reversal by achieving it

conditionally upon a specific shock. This has been accomplished through the incorpo-

ration of intricately designed mechanisms and the imposition of restricted model pa-

rameters. The significance of Lemma 2 lies in its provision of alternative perspectives
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for generating unconditional UIP reversals.21 In this vein, the conditions outlined in

previous studies may not be essential for eliciting unconditional UIP reversals. To illus-

trate this point, we present examples using the models from Valchev (2020) and Candian

and De Leo (2023). It is important to note that we are not asserting the invalidity of

mechanisms introduced in prior papers. Rather, our argument posits that the conditions

in previous models can be eased if conditional UIP reversal is not imperative for the

generation of unconditional UIP reversal.

5.1 Application 1: UIP Reversal under Passive Monetary Policy in

Valchev (2020) Model

Valchev (2020) devises a model incorporating convenience yields that can induce

UIP reversal under the conditions of an active monetary policy and a passive fiscal

policy, particularly when a sufficiently persistent tax rule is in effect.22 The rationale

behind this lies in the notion that, under these specific circumstances, the dynamics of

the system are governed by complex roots. Consequently, the impact of monetary policy

shocks on government debt, and thus convenience yields and excess returns, reverse

signs as forecast horizons extend. However, it should be noted that the presence of

complex roots results in impulse responses of almost all endogenous variables to all

shocks reversing their signs (as shown in the Online Appendix), which may not align

with empirical observations. Hence, the creation of UIP reversal comes at the expense of

21Lemma 2 highlights that unconditional UIP reversals in DSGE models do not necessitate the appear-
ance of conditional UIP reversals for all shocks. In fact, it allows for reversals conditional on a subset of
shocks in the model. In addition, while the necessary and sufficient conditions specified in Lemmas 1
and 2 apply to each draw in admissible sets of SVAR models, significance detection may be challenging,
considering both estimation and identification uncertainty. In our empirical analysis, a notable share of
posterior draws implies negative dynamic Fama coefficients conditional on safe asset demand and antici-
pated technology shocks, but these estimates are generally insignificant. Therefore, we are not contesting
the validity of the previous mechanism but complementing the previous studies by proposing an alterna-
tive approach to generate unconditional UIP reversals.

22It is worth noting that Valchev (2020) defines foreign exchange excess returns in an opposing manner
to our own definition.

31



compromising the model’s performance in other dimensions.23

Furthermore, as demonstrated by Engel (2016), the phenomenon of UIP reversal

is not confined to dollar exchange rates. It is observed in countries like Japan, where

interest rates have remained close to zero, and monetary policy has been characterized

as passive for nearly three decades. In this section, we illustrate that, in line with the

principles outlined in Lemma 2, it is possible to induce UIP reversal in an environment

characterized by passive monetary policy and active fiscal policy, all without necessitat-

ing the presence of complex roots within the equilibrium system.

In the analytical model of Valchev (2020), foreign exchange excess returns are linked

to convenience yields, a factor reliant solely upon the debt level. When active fiscal

policy and passive monetary policy are in effect, the real debt value aligns with the

present value of primary surpluses, with monetary policy making adjustments passively

to maintain the equilibrium path of prices and debt. As a result, the response of excess

returns to monetary policy shocks is notably muted, primarily because the debt level,

and consequently, convenience yields, remain unresponsive to such shocks.

Nonetheless, under the same model, UIP experiences deviations when conditioned

on government spending shocks and tax shocks. Deficit fiscal shocks trigger an upsurge

in inflation and, consequently, interest rates. Under passive monetary policy regime, the

central bank’s tolerance for inflation is high, leading to the erosion of debt value as the

deficits are inflated away. This, in turn, increases convenience yields and foreign ex-

change excess returns. As exemplified in the upper panel of Figure 7, Fama coefficients

remain subdued when conditioned on monetary shocks, but they take on negative val-

ues when conditioned on tax and government spending shocks, lacking any discernible

reversals. Given that no shocks anticipate a positive relationship between interest rates

differential and excess returns so that the necessary conditions outlined in Lemma 1 are

not satisfied, unconditional UIP reversal cannot be delivered with the original Valchev

23The model under consideration is the analytical model outlined in Section 3 of Valchev (2020). It is
noteworthy that the impacts on macro variables exhibit less significant sign reversal in the quantitative
model detailed in Section 4 of Valchev (2020). We thank Rosen Valchev for pointing this out.
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(2020) model under passive monetary policy.

In light of this failure, we adapt the Valchev (2020) model to enable foreign exchange

excess returns to be positively influenced by domestic interest rates and thus engender

a negative relationship between interest rate differentials and foreign exchange excess

returns:

Et∆st+1 + (i∗ − it) = (1/ξ − 1)it −
γΨ

ξ
bht, (13)

We derive Equation 13 by assuming that domestic investors possess the capability to

invest in foreign bonds, employing a leverage ratio denoted as ξ, where ξ is greater

than 1. This assumption allows foreign exchange returns to respond to domestic interest

rates with minimal deviation from the Valchev (2020) model, while keeping the other

equilibrium conditions in the model unchanged.24 Further elaboration of the model and

the derivation of expected foreign exchange excess returns can be found in the Online

Appendix.

The introduction of the modified excess return expression leads to the observation

that a contractionary monetary shock results in positive foreign exchange excess returns

and cross-country interest rate differentials. In the lower panel of Figure 7, it is evident

that the Fama coefficients conditional on monetary shocks converge to zero at a quicker

pace than those conditional on fiscal shocks, which aligns with the sufficient conditions

in Lemma 2. Through appropriate parameterization of the shock variances, we can suc-

cessfully induce UIP reversals under passive monetary policy. In summary, this example

24The original Valchev (2020) model corresponds to a situation where ξ is set to 1.Permitting leverage
greater than 1 suggests that domestic households’ investment in foreign assets involves elevated risk. This
corresponds with the concept of asymmetric risk sharing as explored in Maggiori (2017), which results
in a situation where the US balance sheet is marked by risky assets, contrasting with foreign financial
institutions that predominantly hold safer assets. An alternative method to motivate Equation 13 involves
introducing money and market bonds into households’ decision-making process, as demonstrated in Can-
dian and De Leo (2023) and Engel and Wu (2023), but with the assumption of complementarity between
money and government bonds. However, this approach introduces additional endogenous variables, lead-
ing to a more significant departure from the original Valchev (2020) model.
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demonstrates that, inspired by Lemma 2, UIP reversal can be achieved with a wider

range of parameters and more general conditions.

5.2 Application 2: UIP Reversal with a Variant of Candian and De Leo

(2023) Model

Candian and De Leo (2023) induce UIP reversal by extending an open-economy

New Keynesian model with the incorporation of distorted beliefs, where both shock mis-

perception and over-extrapolative beliefs are deemed essential. The model successfully

generates UIP reversal, specifically conditional on the four shocks that they include in

their model, including technological and preference shocks occurring in both the home

and foreign countries. However, as in Valchev (2020), the mechanism that generates con-

ditional UIP reversal also leads to impulse responses in multiple endogenous variables,

such as GDP, inflation, and consumption, reversing their signs, which does not align

with the prevailing empirical evidence.

We adapt the quantitative model initially presented by Candian and De Leo (2023),

replacing their shocks with the four specific shocks under scrutiny in our SVAR model.

In most cases, we have retained parameter values consistent with Candian and De Leo

(2023). However, we have introduced a lower persistence for monetary policy shocks to

distinguish them from persistent interest rate shocks. For a comprehensive understand-

ing of the model’s intricacies, including its description, solution methodology, and the

calibration of model parameters, please refer to the Online Appendix. In Figure 8, it is

evident that the Fama coefficients, conditioned upon anticipated technology shocks, ex-

hibit negative values, whereas the coefficients conditioned upon the other three shocks

demonstrate positivity. Unconditional UIP can be achieved by appropriately setting the

shock variances.

Candian and De Leo (2023) demonstrates that both shock misperception and over-

extrapolative beliefs are considered essential to generate the UIP reversal. Similar to
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Candian and De Leo (2023), we cannot generate the UIP reversal under the assumption

of full-information rational expectations, as the Fama coefficients conditional on each

of the shocks exhibit the same sign. However, in the Online Appendix, we illustrate

that our model does not necessitate both shock misperception and over-extrapolative

beliefs. We can achieve unconditional UIP reversal with only one of the two belief dis-

tortion assumptions as conditional UIP reversal is not a prerequisite. Admittedly, there

is a conspicuous disparity between the theoretical Fama coefficients and their counter-

parts derived from the SVAR analysis. Nevertheless, our findings provide a significant

revelation: the occurrence of conditional UIP reversal does not stand as a necessary

precondition for the manifestation of unconditional UIP reversal. Due to the insignifi-

cance observed in our estimates of conditional Fama coefficients, our empirical results

do not provide a decisive resolution regarding the validity of our proposed mechanism,

based on the convolution of multiple shocks, versus the prior mechanism relying on

conditional UIP reversal. However, the discussion in this section generalizes the condi-

tions necessary for generating UIP reversal, notably without inducing a corresponding

reversal in the impulse responses of other endogenous variables.

6 Robustness checks

6.1 Identifying one shock at a time

In this subsection, we separately identify each of the four shocks one at a time.

We employ the same identification restrictions as in our benchmark model to ensure

consistency in our analysis. Our goal is to determine whether the separately identified

shocks might confound with the endogenous responses to unidentified shocks.

Figures A.1 and A.2 of the Appendix display the impulse responses and forecast

error variance decompositions, respectively. Our results suggest that the effects of the

separately identified anticipated technology shocks and safe asset demand shocks are

consistent with our benchmark results. However, both monetary shocks and persistent
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interest rate shocks elicit more persistently negative effects on TFP, GDP, and stock prices.

In fact, persistent interest rate shocks and monetary shocks account for up to 34% and

16% of the long-run TFP volatility, respectively, indicating that both shocks may have

been confounded with unfavorable anticipated technology shocks. This confounding

problem can distort the inference of the effects on exchange rates. It is worth noting that

the exchange rate responses are muted to monetary shocks, which can be explained by

the fact that the dollar appreciation following ”true” monetary shocks is offset by the

depreciation provoked by ”true” negative anticipated technology shocks.

6.2 Country pairs

We also investigate the bi-lateral exchange rate dynamics by re-estimating our SVAR

model with data of the US and each of the G6 countries. The impulse responses of the

bi-lateral exchange rates are largely compatible with our benchmark results as presented

in the Online Appendix. However, there exists some heterogeneity across country pairs.

In particular, we observe that monetary shocks and the persistent interest rate shocks

induce insignificantly dollar depreciation responses for the UK. Moreover, safe asset

demand shocks result in more significant dollar appreciation against the Great British

pound and the Canadian dollar, indicating that financial investors may view the US dol-

lar as safer assets against sterling and the Canadian dollar than against other currencies.

We also test the UIP conditions for country pairs with our conditional Fama regres-

sion. In most cases, the confidence bands of the conditional Fama coefficients become

wider, making it difficult to reject the conditional UIP, as shown in the Online Appendix.

However, Japan is an outlier that calls for special attentions. We generally cannot reject

the UIP conditional on any shocks based on the responses of Yen excess returns. In

contrast, we are able to reject the UIP conditional on all shocks at short horizons when

delivering our verdicts based on the conditional dynamic Fama regression coefficients.

This again underscores that the estimates of dynamic Fama coefficients offer an effective

measure of testing conditional UIP.
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6.3 Alternative identification strategies and other robustness checks

We also identify anticipated technology shocks using the patent-based IV proposed

by Klein and Linnemann (2021), which is constructed as the unpredictable component of

patent application growth by its own lags and the Philadelphia Fed’s Survey of Profes-

sional Forecasters. We then identify the other three shocks using the same identification

assumption as the benchmark model, conditional on the IV-identified anticipated tech-

nology shock. The effects and contributions of all shocks are largely robust, as detailed

in the Online Appendix.

There is an growing literature that uses high-frequency asset price movements dur-

ing a narrow window around monetary policy announcements to construct instrumen-

tal variables (IVs) for identifying monetary shocks (Gertler and Karadi 2015, Jarociński

and Karadi 2020). When identifying monetary shocks with the high-frequency IVs of

Jarociński and Karadi (2020) and Miranda-Agrippino and Ricco (2021), we find that the

exchange rate responses largely align with our benchmark results as depicted in the

Online Appendix. However, we observe that domestic output rises in response to tight

monetary shocks, which may take shape because the monetary policy proxies are pre-

dictable by macroeconomic and financial indicators, as discussed in Bauer and Swanson

(2022).

A burgeoning literature has emerged that uses IVs derived from intra-daily changes

in gold prices around a collection of events to identify financial shocks (Piffer and Pod-

stawski 2018 and Georgiadis et al. 2021). Considering that gold is the ultimate safe asset,

we identify safe asset demand shocks using the IV proposed by Piffer and Podstawski

(2018). As depicted in the Online Appendix, high-frequency identified safe asset de-

mand shocks lead to a sharp and persistent decline in TFP and a depreciation of the

dollar, which suggests that these shocks might contain information about technology

factors.25

25We urge caution when applying this method to quarterly SVAR models. First, the IVs are observed at
a higher than quarterly frequency, and there is no scientific methodology to aggregate them to a quarterly
frequency. Second, many intra-quarter effects of high-frequency shocks might be misinterpreted by the
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We also report a battery of other robustness checks in the Online Appendix, cov-

ering various aspects such as: (1) switching to alternative lag structure of the SVAR

model (with the lag lengths ranging from 2 to 6 quarters), (2) replacing the nominal

exchange rate with the real exchange rate, (3) substituting real GDP with consumption,

investment, and hours, (4) swapping stock prices for the global risky asset factor of

Miranda-Agrippino and Rey (2020), (5) examining various interest rates, including the

official monetary policy rate, the three-month treasury rate, and the two-year treasury

rate, instead of the one-year treasury bond rates, (6) utilizing only the sample by 2008Q4

before unconventional monetary policy era, and (7) adopting the Minnesota prior for

our Bayesian estimation. Overall, the conclusions from the benchmark model remain

unchanged with these variations, as reported in the Online Appendix.

7 Concluding remarks

While a substantial literature has probed the determinants of exchange rate dynam-

ics, most studies isolate the causal effects of individual shocks, attributing exchange rate

dynamics predominantly to a dominant shock. In contrast, our paper employs a compre-

hensive approach to jointly disentangle and identify four types of shocks — anticipated

technology shocks, monetary shocks, safe asset demand shocks, and persistent interest

rate shocks. We apply generally agreed-upon assumptions across various dimensions,

including impulse responses, forecast error variance decompositions, and historical de-

compositions. Our findings reveal that exchange rates derive from the collective impacts

of all four shocks, each influencing exchange rates in distinct patterns.

Furthermore, we evaluate UIP deviations both conditionally and unconditionally. In

contrast to existing literature justifying unconditional UIP reversal through mechanisms

generating reversals in UIP conditional on specific shocks, our empirical findings show

SVAR models as exogenous shocks. Third, the proxy SVAR approach does not guarantee that the signs of
the shock realizations agree with the narrative account for key historical episodes when the IVs are sparse
or subject to significant measurement errors.
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no significant evidence of conditional UIP reversal alongside unconditional UIP rever-

sal. Our mathematical proof demonstrates that unconditional UIP reversal can arise as

a collective impact of different shocks, even without a reversal in UIP conditional on

any single shock. Given that conditional UIP reversal is not a necessary prerequisite for

unconditional UIP reversal, the conditions stipulated in earlier models to generate un-

conditional UIP can be non-obligatory. We illustrate this point using models proposed

by Valchev (2020) and Candian and De Leo (2023).

Our paper contributes to the literature by establishing an empirical framework for

evaluating conditional moments and examining the relationship between conditional

and unconditional moments. However, an important and improvable task in under-

standing exchange rate dynamics is to align theoretical moments with not only uncondi-

tional moments but also their conditional counterparts. The current studies are limited

in this regard, warranting further work on both empirical and theoretical fronts. On the

empirical side, there is a need for documenting more robust stylized facts regarding the

conditional relationship between exchange rates and other endogenous variables with

refined identification methods. On the theoretical side, researchers may enhance mod-

els in order to align with the conditional moments uncovered in empirical studies. We

believe this opens a promising avenue for future research, enhancing our understanding

of the mechanisms determining exchange rate movements.

——————————————————————————————————

The Online Appendix is available at:

https: // www. dropbox. com/ sh/ skxveo0t6bes8zm/ AADhJEbvbgFcPKjAac3sgzMHa? dl=

0
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Tables

Table 1: A SUMMARY OF THE TRADITIONAL SIGN RESTRICTIONS

US GDP US Interest Rate Stock Price Real Exchange Rate
Monetary − + − −
Safe Asset Demand − − −
Persistent Interest +30

Notes: A “+” (“−”) sign indicates that the impulse response of the variable is restricted to be positive
(negative) in the quarter the shock occurs. We stipulate that the persistent interest rate shock raises
interest rate for 30 periods and denote this restriction as +30 in the table.

Table 2: NARRATIVE SIGN RESTRICTIONS

Dates Events Shocks Narrative Sign
1979Q4 Volcker Reform Monetary +
1988Q4 Start of a Tightening Cycle Monetary +
1994Q1 Start of a 12-month Tightening Cycle Monetary +
1998Q4 Greenspan Put (LTCM) Monetary −
2001Q2 Greenspan Put (dot-com bubble) Monetary −
2002Q4 50 bp Rate Cut Monetary −
2008Q4 Cut Rate to Zero Monetary −
1987Q4 Black Monday Safe Asset Demand +
2000Q4 dot com bubble bursts Safe Asset Demand +
2008Q3 Global Financial Crisis Safe Asset Demand +
2008Q4 Global Financial Crisis Safe Asset Demand +
2011Q3 European Sovereign Debt Crisis Safe Asset Demand +
2016Q2 BREXIT Referendum Safe Asset Demand +

Notes: A “+” (“−”) sign indicates that the sign of the identified shock is restricted to be positive (negative)
in the selected periods.
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Figure 2: FORECAST ERROR VARIANCE DECOMPOSITIONS

Notes: The solid line and shaded areas report the mean, 68% and 90% confidence intervals.
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Figure 4: IMPULSE RESPONSES

Notes: This figure shows impulse responses to the four identified shocks in the benchmark model. The
solid lines are the actual impulse responses. The shaded areas are the 68% and 90% confidence intervals.
The red dashed lines report the structural scenario analysis when the domestic interest rate channel is
shut down.
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Unconditional UIP Four Shocks Aggregated Anticipated Technology
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Figure 5: SLOPE COEFFICIENTS OF DYNAMIC FAMA REGRESSIONS

Notes: The figure shows the dynamic Fama coefficients estimated with data from 1975Q1 to 2018Q4. The
shaded areas are the 90% and 68% confidence intervals.
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Figure 6: EXCESS RETURN RESPONSES

Notes: This figure shows impulse responses of 1-year excess return ρt+h,4, interest rate difference i∗t+h− it+h
and exchange rate difference st+h+4 − st+h in the benchmark (1975Q1∼2018Q4) model, together with the
90% and 68% confidence intervals.
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Figure 7: SLOPE COEFFICIENTS OF FAMA REGRESSIONS IN AN ANALYTICAL MODEL

Notes: The upper panel illustrates the Fama coefficients within the analytical model of Valchev (2020)
under passive monetary and active fiscal policy. In contrast, the lower panel presents the Fama coefficients
for the same model, accounting for the scenario where domestic investors have the capability to invest in
foreign bonds with a leverage factor denoted as ξ.
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Figure 8: SLOPE COEFFICIENTS OF FAMA REGRESSIONS IN A QUANTITATIVE MODEL

Notes: The figure illustrates the dynamic Fama coefficients derived from a quantitative model that modifies
Candian and De Leo (2023) framework by substituting their exogenous shocks with the shocks under
examination in our SVAR model.
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Figure A.1: IMPULSE RESPONSES: SINGLE IDENTIFIED SHOCK

Notes: This figure shows impulse responses when each of the shock is identified separately one at a
time. The blue dashed line is the median impulse response of the joint identification from the benchmark
model. The shaded areas are the 68% and 90% confidence intervals.
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Figure A.2: FORECAST ERROR VARIANCE DECOMPOSITIONS: SINGLE IDENTIFIED
SHOCK

Notes: This figure shows the forecast error variance decompositions when each of the shock is identified
separately one at a time. The blue dashed line is the mean forecast error variance decompositions of
the joint identification from the benchmark model. The shaded areas are the 68% and 90% confidence
intervals.
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B The IV approach of Barnichon and Mesters (2020)

Our paper proposes a new approach to test conditional UIP by estimating the dy-
namic Fama regressions of Engel (2016) with counterfactual data and conditional fore-
casts where only the shocks that the UIP is conditional on are active. In this appendix,
we compare our approach with the IV approach of Barnichon and Mesters (2020).

Barnichon and Mesters (2020) attempt to estimate a structural time series equation
of the form:

zt = γxt + ut, (B.1)

where zt and xt are scalar endogenous variables, ut is an error term, and γ is the struc-
tural parameter of interest. They propose that the endogeneity problem can be cracked
by using SVAR shocks as IVs. The SVAR model should include both zt and xt, which,
without loss of generality, are assumed as the first two variables in the model. Suppose
the SVAR model has a structural moving average form:

 zt

xt

ot

 =
∞

∑
m=0


Θ(z,z)

m Θ(z,x)
m Θ(z,o)

m

Θ(x,z)
m Θ(x,x)

m Θ(x,o)
m

Θ(o,z)
m Θ(o,x)

m Θ(o,o)
m


 εz,t−m

εx,t−m

εo,t−m

, (B.2)

where ot is a vector of other endogenous variables. Barnichon and Mesters (2020) pro-
pose using the lag sequences of the structural shocks as IVs to estimate parameter γ in
equation (B.1). For illustration purpose, we assume that εx,t, εx,t−1, ..., εx,t−H are valid
instruments and multiplying them by both sides of equation (B.1):

ztεx,t−m = γxtεx,t−m + utεx,t−m, m = 0, · · · , H. (B.3)

Imposing the validity assumption of the IVs, E(utεx,t−m) = 0, we take expectation
for both sides of equation (B.3) and obtain the moment conditions:

Θ(z,x)
m = γΘ(x,x)

m , m = 0, · · · , H. (B.4)

as E(ztεx,t−m) = Θ(z,x)
m and E(xtεx,t−m) = Θ(x,x)

m . γ is solved by the above moment
conditions described in equation (B.4) with the generalized method of moments. As a
result, Barnichon and Mesters (2020) estimate the target coefficient with H + 1 moment
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conditions derived from utilizing one lag of εx,t as the instrument at a time. By contrast,
we obtain the fitted value of z and x utilizing all lags of the structural shocks simultane-
ously. Moreover, Barnichon and Mesters (2020) estimator is inefficient when the effects
of εx on xt are transient (i.e., Θ(x,x)

m = 0) and thus suffer from the weak IV problem.
The relevance of our IV is not dictated by the persistence of the shock effects. Instead, it
depends on whether the shock is of historical significance to the explanatory variable xt.
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C Evaluating Dynamic Fama Coefficients in DSGE Mod-

els

In this appendix, we begin by presenting the proof of Proposition 1. We subse-
quently deduce the moving average representation of the DSGE model both with full
information rational expectations and with distorted beliefs as presented in Candian and
De Leo (2023), which can be used to calculate the Fama coefficients in DSGE models.

C.1 Proof of Proposition 1

Tbe moving average representation of a DSGE model:

yt =
∞

∑
m=0

Θmεt−m, (C.1)

where yt is the endogenous vector, εt are structural shocks with a diagonal variance-
covariance matrix Eεtε

′
t = Σε, and Θm are moving average coefficients, which converges

to zero as m extends.The variance and auto-covariance matrix of the endogenous vector
is characterized by:

Var (yt) =
∞

∑
m=0

ΘmΣwΘ′m

Cov (yt, yt+h) =
∞

∑
m=0

ΘmΣwΘ
′
m+h (C.2)

The variance and auto-covariance matrix of the endogenous vector conditional on
the k-th shock are:

Var
(

yt|εk
t

)
= σ2

k

∞

∑
m=0

Θmeke′kΘ′m

Cov
(

yt, yt+h|εk
t

)
= σ2

k

∞

∑
m=0

Θmeke′kΘ
′
m+h (C.3)

where ek is the selection (column) vector with one in the k-th place and zero elsewhere,
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and σ2
k is the variance of the k-th shock..

Without loss of generality, we include the cross-country interest rate differential,
i∗t − it, as the first variable in the endogenous vector, yt, while i∗t−1 − it−1 + st − st−1

the second endogenous variable. The ordinary least square estimation of unconditional
Fama coefficients, βh, can be expressed as:

βh =
Cov(i∗t+h − it+h + st+h+1 − st+h, i∗t − it)

Var(i∗t − it)

=
e′1Cov(yt, yt+h+1)e2

e′1Var(yt)e1

=
e′1(∑

∞
m=0 ΘmΣεΘ′m+h+1)e2

e′1(∑
∞
m=0 ΘmΣεΘ′m)e1

, (C.4)

The dynamic Fama coefficients conditional on the k-th shock, β
(k)
h , are formulated by

β
(k)
h =

e′1Cov(yt, yt+h+1|εk
t )e2

e′1Var(yt|εk
t )e1

=
σ2

k e′1(∑
∞
m=0 Θmeke′kΘ′m+h+1)e2

σ2
k e′1
(
∑∞

m=0 Θmeke′kΘ′m
)

e1
, (C.5)

According to the above formulation, as the forecast horizon, h, extends, both βh and βk
h

converge to zero at long horizons since Θm+h+1 converges to zero when h is sufficiently
large. Assuming that there are K shocks in total, we have

βh =
e′1(∑

∞
m=0 ΘmΣεΘ′m+h+1)e2

e′1(∑
∞
m=0 ΘmΣεΘ′m)e1

=
∑K

k=1 σ2
k e′1(∑

∞
m=0 Θmeke′kΘ′m+h+1)e2

e′1(∑
∞
m=0 ΘmΣεΘ′m)e1

=
K

∑
k=1

β
(k)
h

(σ2
k e′1(∑

∞
m=0 Θmeke′kΘ′m)e1)

e′1(∑
∞
m=0 ΘmΣεΘ′m)e1

=
K

∑
k=1

β
(k)
h

Var(i∗t − it|εk
t )

Var(i∗t − it)
, (C.6)
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where the second equation can be derived from the fact that Σε is a diagonal matrix with
σ2

k along its diagonal.

Equations C.4 and C.5 shows that the dynamic Fama coefficients can be obtained
once the moving average representation of the DSGE model is obtained. In the sub-
sequent sections, we deduct the form of moving average coefficient for two scenarios:
DSGE models characterized by full-information rational expectations, and DSGE models
with distorted belief as in Candian and De Leo (2023).

C.2 DSGE Models under Full-information Rational Expectations

As shown in Fernández-Villaverde et al. (2007), DSGE models under full information
rational expectation have state-space representations in the following form:

xt+1 = Axt + Bεt

yt = Cxt + Dεt.

The state space model implies a moving average representation of the DSGE model
in the form:

yt =
∞

∑
m=0

CAmBεt−m−1 + Dεt, (C.7)

so that the moving average coefficients are

Θm =

D, when m = 0

CAmB, when m > 0.
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C.3 DSGE Model with Distorted Beliefs

The solution of the DSGE model in Candian and De Leo (2023) is formulated as:

xt+1 = Axt + Bηt (C.8)

yt = Cxt + Dηt. (C.9)

With the assumption of shock mis-perception and over-extrapolative belief, ηt is the
expectation error that can be expressed as

ηt = xt − xt|t−1

= Φ1ηt−1 + Φ2ηt−2 +Mεt − ρ̃Mεt−1, (C.10)

where Φ1 and Φ2 are diagonal matrix with (1− κ)ρ̃k + ρk and −(1− κ)ρ̃kρk along the
diagonal respectively. M measures the standard deviation of true shocks, ρk is the true
persistence of the k-th shock, ρ̃k is the perceived shock persistence, and κ is the steady-
state Kalman gain for belief updates.

In the following, we first attempt to express the expectation errors as a moving
average process of the structural shocks. To do that, we rewrite equation (C.10) into the
matrix form:

[
I 0
0 I

] [
ηt

ηt−1

]
=

[
Φ1 I Φ2 I

I 0

] [
ηt−1

ηt−2

]
+

[
M 0
0 0

] [
εt

0

]
+

[
−ρ̃M 0

0 0

] [
εt−1

0

]

Define

U =

[
I 0
0 I

]
, V =

[
Φ1 I Φ2 I

I 0

]
, W =

[
M 0
0 0

]
, X =

[
−ρ̃M 0

0 0

]

⇒
[

ηt

ηt−1

]
= U−1V

[
ηt−1

ηt−2

]
+ U−1W

[
εt

0

]
+ U−1X

[
εt−1

0

]

⇒
[

ηt

ηt−1

]
=

∞

∑
i=0

(
U−1V

)i
U−1W

[
εt−i

0

]
+

∞

∑
i=0

(
U−1V

)i
U−1X

[
εt−i−1

0

]
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⇒ ηt ,
∞

∑
i=0

Ψiεt−i (C.11)

where Ψi =


[

I 0
]

U−1W

I

0

 when i = 0[
I 0

] [(
U−1V

)i U−1W +
(
U−1V

)i−1 U−1X
] [

I 0
]

when i > 0

As Equations C.8 and C.9 imply that

yt =
∞

∑
m=0

CAmBηt−m−1 + Dηt, (C.12)

the moving average representation of the endogenous vector is expressed as

yt = C
∞

∑
m=0

AmB
∞

∑
i=0

Ψiεt−m−i−1 + D
∞

∑
m=0

Ψmεt−m (C.13)

,
∞

∑
m=0

Θmεt−m, (C.14)

where

Θm =

DΨ0, when m = 0

∑m−1
k=0 CAkBΨm−k−1 + DΨm, when m > 0.
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