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Abstract

In a model with spillovers, consider the difference in the impact of a positive
shock on average outcomes among the treated and untreated, or the marginal
average effect of treatment among the treated with spillovers (MATTS). MATTS
is positive if, and only if, the negated Jacobian inverse of the equilibrium system
is a B-matrix by columns. This condition is also sufficient to answer traditional
comparative statics questions. I also give several sufficient, and sometimes nec-
essary, conditions on the noninverted Jacobian–which correspond to common
modeling assumptions–under which its inverse is a B-matrix by columns. Sign
restrictions on MATTS are testable because the sample difference-in-differences
is an unbiased estimator for MATTS from a superpopulation perspective. I
also show that MATTS generalizes the ATT and the ATE when interference,
or spillovers, are present. I apply the results to oligopoly and contests.
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1 Introduction

When does a treatment or shock have a larger average impact on the treated than the
untreated? This paper addresses this question, which helps predict whether a tax on
some firms will reduce their market share, whether a decrease in effort costs for some
contestants will increase their average relative effort, and whether an intervention to
help the poor will raise their average relative incomes, among other outcomes.

I show that this comparative static, called the marginal average effect of treatment
among the treated with spillovers (MATTS) generalizes the average treatment effect
among the treated (ATT) when interference is present. Also, MATTS is identified
by the population difference-in-differences (DiD) and, if assignment to treatment is
(as if) random, the population difference-in-means (DiM). From a superpopulation
perspective, and in contrast to many estimators for various estimands in the literature,
the sample analogues are unbiased estimators even when spillovers are unrestricted.1

This is significant because spillovers can lead to unexpected model behavior, making it
essential when testing a model to use estimators whose unbiasedness remains robust in
the presence of pervasive spillovers. This is crucial because economics offers numerous
models to explain human and market behavior, many of which incorporate spillovers.
Researchers would benefit if reduced form methods like DiD can effectively test and
select appropriate models.

To my knowledge, existing equilibrium comparative statics results do not predict
the sign of MATTS.2 Spillovers introduce significant complexity. Some papers simplify
the problem by considering the n = 2 case only. Other papers allow for n > 2 but
examine the effect of a treatment or shock applied to a single individual. In the
monotone case in which spillover effects are all positive or all negative, predictions
are typically made for the outcome of each unit . None of these approaches is suitable
for testing within the DiD framework, which estimates average effects and requires
large treated and untreated groups for statistical consistency. Moreover, the results in

1Depending on the context, spillover effects may be called equilibrium effects, strategic effects,
network effects, indirect effects, social interactions, peer effects, or something else.

2This literature is large. Generally speaking it can be classified into approaches which assume
differentiability and those that do not. Some examples assuming differentiability include Dixit
(1986), Nti (1997), Acemoglu and Jensen (2013), Christensen and Cornwell (2018), Christensen
(2019), and Norris et al. (2023), among others. Examples of lattice-theoretic or monotone methods
include Topkis (2011), Milgrom and Roberts (1990), Amir (2005), Vives (1990), and L. C. Corchón
(1994), among others.
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this paper hold for any treatment group, so any statistically significant and unbiased
estimate of MATTS which contradicts its predicted sign rejects the theory.

A second important contribution to this literature is facilitated by the fact that,
within a single framework, I provide comparative statics results under the traditional
assumptions mentioned above. In contrast, most papers in the literature explore
the implications of just one, or a combination of some, of these assumptions. By
comparing the sufficient conditions under each assumption we can more clearly see
how the sign and heterogeneity of spillovers affect predictions.

The general setting involves any model with equilibrium characterized by a system
of equations, interpreting each equation index as a unit of observation (e.g., firms).
The Jacobian of the system encodes spillover effects and is involved when applying
the Implicit Function Theorem (IFT). The (i, j) and (j, i) off-diagonal terms of the
Jacobian capture direct spillover effects between units i and j while the off-diagonal
terms of the Jacobian’s inverse capture equilibrium spillover effects.

The central insight is that desirable comparative statics results obtain when the
negated Jacobian inverse is a B -matrix by columns. B-matrices are defined in Section
2. This condition is necessary and sufficient for MATTS to increase with positive
treatment for any treated subset (Theorem 2). In Corollary 1, I show that the same
condition ensures that the average effect of treatment on the treated with spillovers
(ATTS) increases, the sum of outcomes increases, and a singly treated unit’s outcome
increases more than any other unit’s outcome changes.

While the conditions on the Jacobian inverse can be useful, oftentimes important
modeling assumptions amount to restrictions on direct spillovers. I therefore find
conditions on the elements of the (noninverted) Jacobian under which its negated
inverse is a B-matrix by columns. In three of the four cases I consider, the conditions
restrict the negated Jacobian to be a B-matrix (by rows).

Theorem 3 assumes direct spillovers are anonymous-by-unit, meaning that for each
unit i, a change in unit j’s outcome has the same spillover impact on unit i’s outcome
as a change in unit k’s outcome. As illustrated in Section 7, these type of spillovers
arise in models where a unit’s objective function depends on others’ outcomes only
through their sum, and at symmetric equilibria of symmetric games. In this case,
the negated Jacobian inverse is a B -matrix by columns if, and only if, the negated
Jacobian is a B -matrix. Under this condition on direct spillovers, MATTS is positive
and Corollary 1 applies. While we cannot generally sign the average spillover effect
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on the untreated (ASU), it is positive (negative) if all off-diagonal terms are positive
(negative). These results subsume and expand on the results for a parameter shocks’
impact on equilibrium variables in Dixit (1986) under weaker conditions.

Theorem 4 assumes positive direct spillovers, as in games with strategic comple-
ments. Here, every unit’s outcome increases whenever the negated Jacobian is an
M -matrix, a type of stability condition. Slightly stronger conditions ensure that the
negated Jacobian inverse is a B -matrix by columns so that MATTS is positive.

Theorem 5 assumes negative direct spillovers, as in games with strategic sub-
stitutes. Under Willoughby’s (1977) conditions, the negated Jacobian inverse is a
B -matrix by columns and an M -matrix. In addition to implying that MATTS is
strictly positive and that Corollary 1 applies, these conditions imply that treated
units’ outcomes increase (strictly positive ATTS), and untreated units’ outcomes
weakly decrease (negative ASU).

Theorem 6 formalizes the notion that intuitive comparative statics obtain with
small spillovers, regardless of sign. This setting allows both positive and negative
direct spillover effects within a unit but requires stronger conditions compared to
when spillovers are all positive.3

These results are illustrated and applied in Section 7. First, I refine Silberberg’s
(1978) claim that the profit maximization hypothesis can be tested by observing
whether a firm decreases output in response to a unit tax. I provide a perverse
example in which firms are profit maximizers and a unit tax on some firms lowers
every firm’s output, yet MATTS is positive. However, MATTS must be negative if the
market is perfectly competitive or spillovers are well-behaved in an oligopoly setting.
Thus, a researcher must consider the market structure when using DiD methods to
test the profit maximization hypothesis using Silberberg’s approach.

The perverse example also highlights the importance of interpreting the sample
DiD and, if assignment is (as if) random, DiM as an estimate of MATTS rather
than an estimate of ATT or the average treatment effect (ATE) when spillovers are
present. The researcher would wrongly reject the profit maximizing hypothesis if
these estimates were misinterpreted.

Also in Section 7, in the context of contests I show that (near) symmetry gives
rise to anonymous-by-unit spillovers at symmetric equilibria. This allows for powerful

3The anonymous-by-unit case allows direct spillovers to positive or negative depending on the
unit, but they must be all positive or negative within a unit.
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sign predictions on MATTS which can be tested in reduced form. As in most of the
paper, the relevant literature is discussed in more detail in the relevant section.

Finally, while diagonally dominant matrices are central to existing IFT-based
comparative statics, they play a secondary role here. Instead, I focus on B -matrices
which were introduced in Carnicer et al. (1999) and Peña (2001), and were first
applied to economics in Christensen (2019).4 Several new results for this class are
provided in this paper, especially those which give conditions under which the inverse
of a matrix is a B-matrix by columns.

As for a roadmap, the paper can be thought of as consisting of two complemen-
tary parts with applications in Section 7 that tie them together. Sections 2-5 develop
the theoretical comparative statics results: Section 2 covers mathematical prelimi-
naries, Section 3 presents the model, and Sections 4 and 5 provide conditions on the
inverted and noninverted Jacobian, respectively. The second part, Section 6, studies
the empirical identification of MATTS. Section 8 concludes.

2 Mathematical Preliminaries

Say that the real variable x is positive if x ≥ 0 and strictly positive if x > 0. Similarly,
x is negative if x ≤ 0 and strictly negative if x < 0.

Consider the n × n real matrix A = (aij). A is a P -matrix (P0-matrix) if all
of its principal minors are strictly positive (positive). A is a Z-matrix if all of its
off-diagonal terms are negative. A is an M-matrix if it is a nonsingular Z-matrix and
it has a positive inverse, A−1 ≥ 0. A is strictly diagonally dominant (SDD) if

|aii| >
∑
j ̸=i

|aij| for i = 1, ..., n.

The diagonal entry of an SDD matrix is larger in magnitude than the sum of the
absolute values of the elements in the same row.

Define
r+i = max{0, aij|j ̸= i} and c+j = max{0, aij|i ̸= j}

as the largest nonnegative element in row i (column j). If all elements in the row
4See also Hoffman (1965).
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(column) are strictly negative, set r+i (c+j ) equal to zero. A is a B-matrix if

n∑
j=1

aij > nr+i . (2.1)

for i = 1, ..., n. A is a B-matrix by columns if, for j = 1, ..., n,

n∑
i=1

aij > nc+j . (2.2)

For each row of a B-matrix, the average entry is positive and greater than each of
the off-diagonal entries. A useful mnemonic is that B-matrices are mean positive
dominant. If inequalities (2.1) and (2.2) are weak, then A is a B0-matrix and B0-
matrix by columns, respectively.

An SDD matrix with a strictly positive diagonal is a P -matrix with a strictly
positive determinant. A B-matrix (B0-matrix) also has a strictly positive (positive)
determinant, and no weaker linear condition exists under which A has this property
(Carnicer et al., 1999). A B-matrix (B0-matrix) is also a P -matrix (P0-matrix) (Peña,
2001). A B-matrix (B0-matrix) has a strictly positive (positive) diagonal; in fact,
aii > r+i (aii ≥ r+i ) for all i (Peña, 2001).5 These and other properties of B-matrices
are useful in proving existence, uniqueness, and stability of equilibria (Christensen,
2019).

3 The Comparative Statics Problem

The following framework is standard, except for (1) I adopt the language of reduced
form causal estimation to describe the problem and (2) I introduce a novel approach to
accommodate different treatment groups. The goal is to provide comparative statics
predictions that are valid for any treatment group and for any treatment that has a
positive direct impact on outcomes. In this way, the validity of any given statistical
test of the sign restriction will not depend on the identity of the treatment group or
whether treated units receive the treatment in the prescribed amount.

The population of n units is partitioned into the treated (gi = 1) and untreated
(gi = 0). Call g = (g1, ..., gn) the group assignment vector, or simply the assignment.

5For a B-matrix, aii > nr+i −
∑

j ̸=i aij ≥ nr+i − (n − 1)r+i = r+i ≥ 0. For a B0-matrix the first
inequality is weak, but otherwise the argument is the same.
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A unit is in the treated group if it receives a shock—or treatment—in the sense that
a parameter changes which directly affects its optimal decision.

There are n continuously differentiable functions f i(y;λ) for i = 1, .., n, where
y = (y1, ..., yn) is a vector of endogenous outcome variables and λ = (λ1, ..., λn) is a
vector of exogenous parameters. Assume y ∈ Y ⊂ Rn and λ ∈ Λ ⊂ Rn, where Y and
Λ are open sets. As an example, each function f i may represent the marginal profit of
firm i, yi its output, and λi the unit tax applied to firm i. The equation f i(y;λ) = 0

would be firm i′s first order condition for profit maximization.
Given λ = λ̄, an equilibrium ȳ is a solution to the system of equations f i(y; λ̄) = 0

for i = 1, ..., n. More compactly, let f = (f 1, ..., fn). Then, in equilibrium, f(ȳ; λ̄) = 0.

To describe the equilibrium effect of a change in the parameters λ, we need a way
to select which parameters are changing to accommodate different treatment groups.
To simplify, assume ∂f i

∂λj
= 0 ∀ j ̸= i. This means, for example, that firm i’s output

is directly affected by a tax on firm i, but not by a tax on firm j.6 Letting I denote
the n×n identity matrix, put G = Ig as the diagonal matrix whose main diagonal is
the group assignment vector. Let Dλf(ȳ; λ̄) be the n× 1 vector with typical element
f i
λ ≡ ∂f i

∂λi
. Then GDλf(ȳ; λ̄) is the n× 1 vector of direct treatment effects.

The Jacobian of f , Dyf(y;λ), is the n× n matrix of partial derivatives, f i
j ≡

∂f i

∂yj
.

Let Dy(λ̄) denote the vector of equilibrium treatment effects whose ith element is
dȳi
dλ

≡
∑

j:gj=1
dȳi
dλj

. Then by the IFT, if Dyf(ȳ; λ̄) is nonsingular,

Dy(λ̄) = −[Dyf(ȳ; λ̄)]
−1GDλf(ȳ; λ̄). (3.1)

I can now define MATTS, ATTS, and ASU. Let nt and nu be the number of
units in the treated and untreated groups, respectively, in the population. Note that
nt + nu = n. Let δij be the typical element of −[Dyf(ȳ; λ̄)]

−1. Then from (3.1) it
follows that the average effect of treatment on the treated with spillovers (ATTS)

6Firm i is indirectly affected by the tax on firm j if ∂fi

∂yj
̸= 0.
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and the average spillover effect on the untreated (ASU) are, respectively,

ATTS =
1

nt

∑
r:gr=1

∑
s:gs=1

δrsf
s
λ and (3.2)

ASU =

 1
nu

∑
r:gr=0

∑
s:gs=1 δrsf

s
λ if nt < n

0 if nt = n.
(3.3)

If nt = n, then the whole population is treated so ASU is conceptually undefined, but
for technical reasons I set it equal to zero. Then if nt < n,

MATTS = ATTS − ASU

=
1

nt

∑
r:gr=1

∑
s:gs=1

δrsf
s
λ −

1

nu

∑
r:gr=0

∑
s:gs=1

δrsf
s
λ. (3.4)

And if nt = n, MATTS = ATTS.

Example 1. Let n = 3. By (3.1), equilibrium treatment effects are
dȳ1
dλ
dȳ2
dλ
dȳ3
dλ

 =

 δ11f
1
λg1 + δ12f

2
λg2 + δ13f

3
λg3

δ21f
1
λg1 + δ22f

2
λg2 + δ23f

3
λg3

δ31f
1
λg1 + δ32f

2
λg2 + δ33f

3
λg3

 .

Suppose only units 1 and 2 are treated, or g = (1, 1, 0). Then

ATTS =
1

2

{(
δ11f

1
λ + δ12f

2
λ

)
+
(
δ21f

1
λ + δ22f

2
λ

)}
=

1

2

{
(δ11 + δ21) f

1
λ + (δ22 + δ12) f

2
λ

}
,

ASU = δ31f
1
λ + δ32f

2
λ ,

and
MATTS =

[
1

2
(δ11 + δ21)− δ31

]
f 1
λ +

[
1

2
(δ22 + δ12)− δ32

]
f 2
λ .

Analogous formulas can be written for the other non-zero assignment vectors: (0, 0, 1),
(0, 1, 0), (1, 0, 0), (1, 0, 1), (0, 1, 1), and (1, 1, 1).
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4 Conditions on Equilibrium Spillover Effects

I begin with conditions on the elements of the negated Jacobian inverse, δij, which
determine the sign of MATTS and other quantities of interest.

The first result can be illustrated in the n = 3 case from Example 1. When
g = (1, 1, 0), ATTS ≥ 0 whenever f 1

λ , f
2
λ ≥ 0 if and only if δ11 + δ21 ≥ 0 and

δ21+δ22 ≥ 0. Note that the latter two inequalities involve the partial sums of columns
1 and 2 of the negated Jacobian inverse. Call these diagonally-centered partial column
sums because each one includes its diagonal term, δ11 and δ22.

Similarly, ASU ≥ 0 whenever f 1
λ , f

2
λ ≥ 0 iff δ31 ≥ 0 and δ32 ≥ 0. The latter terms

are the elements that were excluded from the diagonally-centered partial column sums
of columns 1 and 2. Call these non-diagonally-centered partial column sums.

Finally, MATTS ≥ 0 whenever f 1
λ , f

2
λ ≥ 0 if the average of the terms included in

the diagonally-centered partial column sum exceeds the average of the terms excluded
from that sum, by column. That is, 1

2
(δ11 + δ21) ≥ δ31 and 1

2
(δ12 + δ22) ≥ δ32.

Theorem 1 generalizes this argument to allow for any group assignment and any
finite n. Define Γ = {g = (g1, ..., gn) ∈ Rn|gi ∈ {0, 1} ∀i and gi = 1 for some i} as
the set of all possible non-zero group assignment vectors. I suppress arguments in the
following results, but they are all equilibrium results.

Theorem 1. Suppose Dyf(ȳ; λ̄) is nonsingular.

1. ATTS ≥ 0 for any g ∈ Γ whenever Dλf ≥ 0 iff
∑

r:gr=1 δrs ≥ 0 for all s :gs = 1

and all g ∈ Γ. Moreover ATTS > 0 for any g ∈ Γ whenever Dλf > 0 iff, for any
g ∈ Γ,

∑
r:gr=1 δrs ≥ 0 for all s :gs = 1 with strict inequality for some s :gs = 1.

2. ASU ≥ 0 for any g ∈ Γ whenever Dλf ≥ 0 iff
∑

r:gr=0 δrs ≥ 0 for all s :gs = 1

and all g ∈ Γ. Moreover, if nt < n, then ASU > 0 for any g ∈ Γ whenever
Dλf > 0 iff, for any g ∈ Γ,

∑
r:gr=0 δrs ≥ 0 for all s :gs = 1 with strict inequality

for some s : gs = 1.

3. MATTS ≥ 0 for any g ∈ Γ whenever Dλf ≥ 0 iff 1
nt

∑
r:gr=1 δrs ≥

1
nu

∑
r:gr=0 δrs

for all s :gs = 1 and all g ∈ Γ such that nt < n, and 1
n

∑n
r=1 δrs ≥ 0 for

s = 1, ..., n. Moreover, MATTS > 0 for any g ∈ Γ whenever Dλf > 0 iff, for
any g ∈ Γ, 1

nt

∑
r:gr=1 δrs ≥

1
nu

∑
r:gr=0 δrs for all s :gs = 1 (with strict inequality

for some s : gs = 1) and 1
n

∑n
r=1 δrs ≥ 0 for s = 1, ..., n (with strict inequality

for some s = 1, ..., n).
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Remark 1. Variations of this result are straightforward. In addition to the necessary
and sufficient result in part 1, one can also write

• ATTS ≥ 0 for any group assignment vector g ∈ Γ whenever Dλf ≤ 0 iff∑
r:gr=1 δrs ≤ 0 for all s :gs = 1 and all g ∈ Γ.

• ATTS ≤ 0 for any group assignment vector g ∈ Γ whenever Dλf ≤ (≥)0 iff∑
r:gr=1 δrs ≥ (≤)0 for all s :gs = 1 and all g ∈ Γ.

Conditions for ATTS > (<)0 can be generalized analogously. Similar variations hold
for parts 2 and 3 of the theorem.

In words, Theorem 1 says that ATTS (ASU) is positive for any non-trivial assignment
whenever direct treatment effects are positive if, and only if, every (non-)diagonally-
centered partial column sum of the negated Jacobian inverse is positive. Moreover,
ATTS (ASU) is strictly positive iff every (non-)diagonally-centered partial column
sum of the negated Jacobian inverse is positive, with at least one sum being strictly
positive for every nontrivial assignment.

Theorem 1 also says that MATTS is positive iff the average of any set of column
entries which includes the diagonal term is larger than the average of the remaining
column entries. This is harder to conceptualize, but there is a profitable simplification.

I illustrate the idea in the n = 3 case. Writing out the inequalities in part 3 of
Theorem 1, we have, for each i = 1, 2, 3 and j ̸= k ̸= i :

δii ≥
1

2
(δji + δki) (4.1)

1

2
(δii + δji) ≥ δki (4.2)

1

2
(δii + δki) ≥ δji (4.3)

δii + δji + δki ≥ 0. (4.4)

Those four inequalities are equivalent to these three:

δii + δji + δki ≥ 3δji (4.5)

δii + δji + δki ≥ 3δki (4.6)

δii + δji + δki ≥ 0. (4.7)
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Inequalities (4.5)-(4.7) are the same as (4.2)-(4.4). To get (4.1), add (4.5) and (4.6),
and then rearrange:

2(δii + δji + δki)δii ≥ 3(δji + δki) =⇒ δii ≥
1

2
(δji + δki) .

Notice that inequalities (4.5)-(4.7) are equivalent to saying that the negated Jacobian
inverse, −[Dλf ]

−1, is a B0-matrix by columns! The next result says that this result
holds for arbitrary n < ∞.

Theorem 2. Suppose Dyf(ȳ; λ̄) is nonsingular. MATTS ≥ (≤)0 for any assignment
g ∈ Γ whenever Dλf ≥ (≤)0 iff −[Dyf ]

−1 is a B0-matrix by columns. Moreover,
MATTS > (<)0 for any assignment g ∈ Γ whenever Dλf > (<)0 if −[Dyf ]

−1 is a
B-matrix by columns.

From a linear algebra perspective, this result says that for a given matrix, every
column sum is positive and the average of any set of column entries which includes
the diagonal term is larger than the average of the remaining column entries iff the
matrix is a B0-matrix by columns. This characterization of B-matrices is new.

To interpret this result, think of the elements of the negated Jacobian inverse, δij,
as the equilibrium effect of a one unit increase in unit i’s outcome on unit j′s outcome
for i ̸= j. If the negated Jacobian is a B0-matrix by columns, this means that the
equilibrium effect of a change in any unit i’s outcome on unit j′s outcome cannot be
larger than the average equilibrium effect on unit j, where the average equilibrium
effect includes the own equilibrium effect δjj. This condition rules out direct spillover
effects which accumulate into outlier equilibrium spillover effects.

Theorem 2 is a fascinating result. First it identifies a well-known class of matrices,
B-matrices, which characterize the negated Jacobian inverse such that MATTS is
positive. Thus, to determine the type of direct spillover effects under which MATTS
is (strictly) positive, we can focus attention on the class of matrices whose transposed
inverse is a B0-matrix (B-matrix). This task is taken up in the next section.

In addition, the characterization of MATTS provided in part 3 of Theorem 1 relies
on significantly more inequalities than the characterization in Theorem 2. For a given
n, part 3 of Theorem 1 requires one to check

n−1∑
j=0

(
n− 1

j

)
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inequalities per column while the B0-matrix property requires only n.7 The remaining
inequalities are redundant. To give a sense of the scale of simplification, if n = 15,
then part 3 of Theorem 1 involves checking 16,384 inequalities per column for a total
of 245,760 inequalities; Theorem 2 reduces this to 15 per column for a total of 225.
If n = 25, the totals are over 419 million compared to just 625.

Finally, three useful corollaries easily obtain as a consequence of the B0-matrix
characterization. First, if MATTS is always positive, then ATTS is also always pos-
itive. On first impression, this is surprising since MATTS is the difference between
ATTS and ASU. But the B-matrix condition implies that the own equilibrium ef-
fect dominates negative equilibrium effects from other units. Second, treatment
increases the total, and thus average, outcome. That is, if Y ≡

∑n
i=1 yi, then

dȲ
dλ

≡
∑n

i=1
dȳi
dλ

≥ 0. Third, if there is a single treated unit, then the impact of
treatment on this unit is positive and larger in magnitude than the impact on any
other unit.

Corollary 1. Suppose −Dyf is nonsingular. If −[Dyf ]
−1 is a B-matrix (B0-matrix)

by columns, then

1. ATTS > (≥) 0 for every g ∈ Γ whenever Dλf > 0,

2. dȲ
dλ

> (≥) 0 for every g ∈ Γ whenever Dλf > 0 and

3. if, in addition, unit i is the only treated unit (nt = 1), dȳi
dλ

> (≥)
∣∣∣dȳjdλ

∣∣∣ for all
j ̸= i whenever Dλf > 0.

Proof. I prove the result for B-matrices. The result for B0-matrices is analogous.
(1) By the definition of a B-matrix by columns,

∑
i δij > nc+j for j = 1, ..., n. Let

H = {h ∈ N|1 ≤ h ≤ n and δhj < 0}. If gs = 1, then
∑

r:gr=1 δrs ≤ 0 only if there are
some terms δrs in the sum such that r ∈ H. But by Proposition 2.4 in Peña (2001),
δjj >

∑
h∈H |δhj| .8 It follows that for all g ∈ Γ,

∑
r:gr=1 δrs > 0 for all s :gs = 1. Thus,

ATTS > 0 by Theorem 1.
7For each column, the inequalities in part (3) of Theorem 1 involve every difference between the

diagonally-centered partial column sum and the sum of the remaining column entries. Thus, the
number of inequalities to check is the same as the number diagonally-centered partial column sums.
Each of these sums includes the diagonal element, to which we add between 0 and n−1 off-diagonal
elements. If j off-diagonal elements are included, there are n− 1 choose j inequalities.

8δjj > nc+j −
∑

i ̸=j δij = nc+j −
∑

h̸=j,h ̸=H δhj +
∑

h∈H |δhj | .
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(2) By equation (3.1), dȲ
dλ

=
∑

i

∑
j δijf

j
λgj =

∑
j (
∑

i δij) f
j
λgj. Note that

∑
i δij >

0 because −[Dyf ]
−1 is a B-matrix by columns. This proves the result.

(3) If gi = 1 and gj = 0 for all j ̸= i, then by equation (3.1) we have dȳi
dλ

= δiif
i
λ

and dȳj
dλ

= δjif
j
λ for all j ̸= i, so it suffices to prove δii > |δji| for all j ̸= i. But this

follows from Proposition 2.4 in Peña (2001).

5 Conditions on Direct Spillover Effects

Theorems 1-2 are especially useful if the Jacobian can be inverted in closed form, but
often this is infeasible. This section gives conditions on the (noninverted) Jacobian
under which MATTS is positive. Put another way, rather than finding conditions on
the equilibrium spillover effects, δij, I now focus on finding conditions on the direct
spillover effects, f i

j .
By Theorem 2 and Corollary 1 it is sufficient to find conditions on the negated

Jacobian such that its inverse is a B-matrix by columns. This is a challenging problem
in general, but I make headway in some economically relevant special cases. Similar to
Christensen (2019), the overall theme of the findings is that a trade-off exists between
the heterogeneity and size of spillovers.

5.1 Anonymous-By-Unit Spillovers

A great deal of structure emerges if spillover effects are anonymous-by-unit, or f i
i = αi

and f i
j = βi for all j ̸= i and all i = 1, ..., n. In this case, a unit increase in yj has the

same effect on yi as a unit increase in yk, for any j ̸= k ̸= i. In matrix form,

Dyf(ȳ, λ̄) =


α1 β1 · · · β1

β2 α2 · · · β2

...
... . . . ...

βn βn · · · αn

 .

This case arises in two important classes of models: (1) when the component functions
take the form f i(y;λ) = f i(yi,

∑
j ̸=i yj;λ) such as in Cournot competition where a

firm’s demand, which can be different for each firm, depends on rivals’ outputs only
through their sum, and (2) at symmetric equilibria when the component functions f i

are symmetric in y−i. See Section 7 for more detail and examples.
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Dixit (1986) derives closed form comparative statics formulae for this case. To
sign the comparative statics, he assumes that αi < 0 and the matrix −Dyf(ȳ, λ̄) is
SDD: for i = 1, ..., n, | − αi| > (n− 1)| − βi|, or,αi < (n− 1)βi if βi ≤ 0

αi < −(n− 1)βi if βi > 0.
(5.1)

Dixit obtains the following three results on equilibrium variables for the case when
only unit i is treated (nt = 1). If f i

λ > 0, then the treated unit’s outcome increases
(dȳi/dλ > 0), the total outcome increases (dȲ/dλ > 0), and the outcome of untreated
units j ̸= i increases or decreases as βj is negative or positive.

Christensen (2019) showed that the first two results hold under the weaker assump-
tion that −Dyf(ȳ, λ̄) is a B-matrix, that is, when −αi − (n− 1)βi > nmax{0,−βi}
for i = 1, ..., n, or αi < βi if βi ≤ 0

αi < −(n− 1)βi if βi > 0.
(5.2)

To see that this is a weaker restriction than SDD, note that (5.1) implies (5.2). On
the other hand, here is B-matrix that is not SDD: 3 2.5 2.5

2 3 2

1 1 2

 .

Remarkably, by direct computation we can also sign MATTS, ATTS, and ASU
for any assignment, not just those with a single treated unit. To this end, let

Γ = 1 +
n∑

i=1

βi/(αi − βi).

Per equation (41.1) in Dixit (1986) we have

dȳi
dλ

= − gif
i
λ

αi − βi

+
βi

Γ(αi − βi)

n∑
j=1

gjf
j
λ

αj − βj

and (5.3)

dY

dλ
= − 1

Γ

n∑
i=1

gif
i
λ

αi − βi

. (5.4)
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If −Dyf is a B-matrix and βi > 0 then

− 1

n
= − βi

nβi

<
βi

αi − βi

< 0. (5.5)

If βi ≤ 0 then βi/(αi−βi) ≥ 0. From these two facts we have Γ = 1+
∑n

i=1
βi

αi−βi
> 0.

It follows that dȲ
dλ

> 0 for any assignment g ∈ Γ whenever Dλf > 0.

Turning to average impacts, note that

ATTS =
1

nt

− ∑
j:gj=1

f j
λ

αj − βj

+
∑

k:gk=1

βk/(αk − βk)

Γ

∑
j:gj=1

f j
λ

αj − βj


= − 1

nt

 ∑
j:gj=1

f j
λ

αj − βj

(
1−

∑
k:gk=1

βk/(αk − βk)

Γ

) ,

ASU =
1

nu

∑
k:gk=0

βk/(αk − βk)

Γ

∑
j:gj=1

f j
λ

αj − βj

, and

MATTS = −
∑
j:gj=1

f j
λ

αj − βj

{
1
nt

(
1−

∑
k:gk=1

βk/(αk−βk)
Γ

)
+ 1

nu

∑
k:gk=0

βk/(αk−βk)
Γ

}
.

Because

Γ−
∑

k:gk=1

βk

αk − βk

= 1 +
∑

k:gk=0

βk

αk − βk

> 1− nu

n
≥ 0,

it follows that ATTS> 0. The sign of ASU is ambiguous in general, but it is strictly
positive (strictly negative) if βk ≥ (≤) 0 for all k :gk = 0 with strict inequality for
some k : gk = 0. To sign MATTS, observe that

Γ−
∑
j:gj=1

βj

αj − βj

+
nt

nu

∑
k:gk=0

βk

αk − βk

= 1 +
∑

k:gk=0

βk

αk − βk

+
nt

nu

∑
k:gk=0

βk

αk − βk

= 1 +
n

nu

∑
k:gk=0

βk

αk − βk

> 1− n

nu

nu

n

= 0.
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It follows that MATTS> 0. These findings are summarized in the theorem below.

Theorem 3. Suppose spillovers are anonymous-by-unit and that −Dyf(ȳ, λ̄) is a
B-matrix. Then for any g ∈ Γ and any vector of direct treatment effects Dλf > 0,

1. MATTS > 0,

2. Corollary 1 appl ies, and

3.

ASU > 0 if βk ≥ 0 for all k : gk = 0 and βk > 0 for some k : gk = 0

ASU < 0 if βk ≤ 0 for all k : gk = 0 and βk > 0 for some k : gk = 0.

Is there any weaker condition which guarantees that MATTS is strictly positive
when spillovers are anonymous-by-unit? No, not if αi ̸= βi. In this case −Dyf is a
B-matrix if it is a B0-matrix, and −Dyf is a B-matrix if and only if [−Dyf ]

−1 is a
B-matrix by columns. This is a new result for B-matrices.

Lemma 1. Suppose for all i = 1, ..., n, f i
i = αi ̸= 0 and f i

j = βi ̸= αi for all j ̸= i.
Then −Dyf(ȳ; λ̄) is a B-matrix (by rows) if and only if −[Dyf(ȳ; λ̄)]

−1 a B-matrix
by columns.

Sufficiency follows from Theorem 2 since we have shown that MATTS>0 when
−Dyf is a B-matrix. I prove necessity and provide an alternate sufficiency proof in
the Appendix. Lemma 1 and Theorem 2 imply the following:

Corollary 2. If spillover effects are anonymous-by-unit and αi ̸= βi ∀i, then MATTS>
0 for any g ∈ Γ whenever Dλf > 0 if and only if −Dyf(ȳ, λ̄) is a B-matrix.

5.2 Positive Spillovers

Assume spillovers are positive, or f i
j ≥ 0 for all i ̸= j. If, in addition, −Dyf has a

strictly positive diagonal then it is a Z-matrix. If it is also an M -matrix it has a
positive inverse, and thus the outcome of every unit weakly increases; hence, ATTS
and ASU are positive. In fact, this is also a necessary condition. A stronger condition
is needed to ensure that MATTS is positive.

Theorem 4. Suppose for i = 1, ..., n, f i
j ≥ 0 for all i ̸= j and f i

i < 0.

1. For all i = 1, ..., n, dȳi
dλ

≥ 0 for any assignment g ∈ Γ whenever Dλf ≥ 0 if and
only if −Dyf is an M -matrix. It follows that ATTS ≥ 0 and ASU ≥ 0.
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2. Suppose
−f i

i > (n− 1)max
j ̸=i

{f i
j} ∀i. (5.6)

Then −Dyf is an M -matrix and [−Dyf ]
−1 is a B-matrix by columns. Thus,

part (1) applies, MATTS > 0, and the results of Corollary 1 apply.

Condition (5.6) implies that −Dyf is an M -matrix and a B-matrix. To see this, note
that r+i = max{0,−f i

j |j ̸= i} = 0. Then, because (n − 1)maxj ̸=i{f i
j} ≥

∑
j ̸=i f

i
j , it

follows that
∑n

j=1−f i
j > nr+i = 0. Thus, −Dyf is a B-matrix. A B-matrix is a P -

matrix, so it follows that −Dyf is also an M -matrix because a nonsingular Z-matrix
that is also a P -matrix is an M -matrix (Plemmons, 1977). Thus, part 2 of Theorem
4 identifies a subclass of B-matrices whose inverse is a B-matrix by columns. Given
the sign restrictions on f i

j , (5.6) cannot be weakened while retaining the property
that −Dyf is a B-matrix because it reduces to the definition of a B-matrix if n = 2.

Intuitively, when spillovers are positive, an increase in any unit’s outcome (weakly)
increases the outcomes of all other units. Thus, a treatment that increases the out-
come of any unit(s) should increase the outcome of all units, provided that the equilib-
rium system is well-behaved. Consequently, we expect ATTS and ASU to be positive.
The system is well-behaved if its Jacobian is an M -matrix, which is a type of stability
requirement (Plemmons, 1977; Christensen and Cornwell, 2018).

To see that signing MATTS requires stronger conditions, observe that

−Dyf =

[
1 −1.1

0 1

]
has inverse [−Dyf ]

−1 =

[
1 1.1

0 1

]
,

so −Dyf is an M -matrix but [−Dyf ]
−1 is not a B-matrix by columns. The latter

implies by Theorem 2 that there exists a vector of strictly positive direct treatment
effects and an assignment such that MATTS is strictly negative. This occurs if direct
treatment effects are all one, Dλf = (1, 1)T , and only unit 2 is treated, g = (0, 1). In
this case, dȳ1

dλ
= 1.1 and dȳ2

dλ
= 1, but MATTS = 1− 1.1 = −0.1 < 0.

5.3 Strictly Negative Spillovers

Strong results are also available if spillovers are strictly negative, meaning f i
j < 0

for all i, j. For then the negated Jacobian −Dyf is a strictly positive matrix. If
its inverse is an M -matrix, the terms on the main diagonal are strictly positive and
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the off-diagonal terms are negative. From the latter it follows that ASU is negative.
In fact, dȳi

dλ
≤ 0 for any untreated unit. If, in addition, the inverse is a B-matrix

by columns, it follows that ATTS and MATTS are strictly positive, as claimed in
Theorem 5 below. In fact, dȳi

dλ
> 0 for any treated unit if treatment is uniform, or

f i
λ = f̄λ > 0∀i. The result relies largely on Willoughby (1977) which provides tight

(for n ≥ 4) sufficient conditions under which the inverse of a positive matrix is an
M -matrix.

Lemma 2 (Willoughby, 1977). Suppose −f i
j > 0 for all i, j = 1, ..., n. Assume 0 <

m ≤ M < 1 and for i ̸= j, 0 < m ≤ f i
j/f i

i ≤ M < 1. Let the interpolation parameter,
s, be defined by

M2 = sm+ (1− s)m2.

Further suppose that any of the following conditions is satisfied:

1. n = 2,

2. m = M , or

3. n ≥ 3 and s ≤ 1
n−2

.

Then [−Dyf ]
−1 exists and is a SDD (by rows and columns) M-matrix.

Theorem 5. Suppose any of the conditions of Lemma 2 are satisfied. Then for any
group assignment g ∈ Γ and Dλf > 0, MATTS > 0, ASU ≤ 0, and dȳi

dλ
≤ 0 for any

i : gi = 0. Corollary 1 also applies. If, in addition, f i
λ = f̄λ > 0 ∀i, then dȳi

dλ
> 0 for

any i : gi = 1.

While Lemma 2 concludes that [−Dyf(ȳ; λ̄)]
−1 is a SDD matrix by rows and

columns, because it is also an M -matrix, this is equivalent to saying that it is a B-
matrix by rows and columns. The reason for this is that r+i = c+j = 0, so the B-matrix
definition requires only that its row and column sums are positive. For each column j,
this means, ajj > −

∑
i ̸=j aij, which is equivalent to |ajj| >

∑
i ̸=j |aij| . And similarly

for each row i. Hence, apply Theorem 2 to get Theorem 5.
Intuitively, if a single unit receives a strictly positive treatment, downward pres-

sure is exerted on the outcomes of all other units when direct spillover effects are
strictly negative. Consequently, we expect the treated unit’s outcome to increase
while untreated units’ outcomes decrease, and hence MATTS is strictly positive. For
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a well-behaved system—as defined by the conditions in Lemma 2—this intuition ex-
tends to any treatment group after accounting for equilibrium spillovers. Note that
these conditions are global in the sense that they constrain the heterogeneity of direct
spillover effects of all units jointly. In contrast, Theorems 3 and 4 constrain the het-
erogeneity of these effects acting on a single unit. Put differently, Lemma 2 is a joint
condition on all the off-diagonal terms of the negated Jacobian, whereas the other
results are conditions which apply independently to each row of the matrix.

5.4 Small Spillovers

The next result formalizes the intuition that small spillovers should not be able to
overcome the direct effect of treatment. Viewed through a linear algebra lens, Theo-
rem 6 identifies a new subclass of B-matrices whose inverse is a B-matrix by columns.
The proof relies on an inequality recently established in Norris et al. (2023).

Theorem 6. Consider −Dyf . If

−f i
i > (n− 1)2

∑
i ̸=j

∣∣−f i
j

∣∣ for i = 1, ..., n, (5.7)

then
δjj > (n− 1)

∑
i ̸=j

|δij| for i = 1, ..., n. (5.8)

When inequalities (5.7) and (5.8) are satisfied, −Dyf is a SDD (by rows) B-matrix
and −[Dyf ]

−1 is a SDD (by columns) B-matrix by columns, respectively. It follows
that MATTS > 0 for any g ∈ Γ whenever Dλf > 0 and that Corollary 1 applies.

If we allow f i
j to take any sign, then condition (5.7) cannot be weakened while

retaining the property that −Dyf is a B-matrix because it reduces to the definition
of a B-matrix for n = 2 and −f 1

2 > 0, for example. Also observe that condition (5.7),
which applies if spillovers can take any sign, is stronger than condition (5.6), which
applies if spillovers are positive. This illustrates that sign heterogeneity in spillover
effects contribute to undisciplined comparative statics.
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6 Empirical Identification of MATTS

In the empirical literature, interference arises when the treatment applied to one
unit affects the outcome for other units (Imbens and Rubin, 2015). The standard
framework assumes no interference, thereby ruling out spillover effects. In this setting,
it is well known that (1) the average treatment effect among the treated (ATT)
is identified by the population difference-in-differences (DiD), and (2) if treatment
assignment is completely random, the ATT equals the average treatment effect (ATE),
which is identified by the population difference-in-means (DiM). This section shows
that MATTS generalizes these ATT properties when interference is present.

Another contribution of this section is to highlight the importance of the MATTS
estimand, as its natural estimator—the sample DiD—is unbiased from a superpop-
ulation perspective even in the presence of pervasive spillovers. Since Sobel (2006),
many studies have noted that estimators unbiased for a given estimand in the ab-
sence of interference become biased when interference exists. Butts (2021) and Xu
(2023) make a similar point in the DiD context. However, this observation often mo-
tivates the development of new causal estimands and, in some cases, new estimators.
Many efforts aim to separately identify direct causal effects from spillover effects,
which typically require additional assumptions restricting spillovers. Common ap-
proaches include partial interference, where some identifiable units remain unaffected
by spillovers (e.g., Hudgens and Halloran, 2008), exposure mappings, which reduce
the dimensionality of the effective assignment vector (e.g., Manski, 2013), and struc-
tural approaches such as linear-in-means models which often require some knowledge
of the network structure (e.g., Blume et al., 2015; Kline and Tamer, 2020; Bramoullé
et al., 2020).9 Basse and Airoldi (2018) show that some restrictions on spillovers are
necessary for unbiasedness in an experimental, design-based approach.

In contrast, this paper focuses on MATTS because the sample DiD remains an
unbiased estimator (from a superpopulation perspective) even when spillovers are
unrestricted.10 From the perspective of testing comparative statics predictions of a
theory, having estimators that remain unbiased under unrestricted spillovers is cru-
cial. As shown in the theoretical sections of this paper, pervasive spillovers can gen-

9Other examples include Athey et al. (2018), Vazquez-Bare (2023), Baird et al. (2018), Sävje
et al. (2021), Butts (2021), and Xu (2023).

10Vazquez-Bare (2023) examines randomized experiments in a partial interference setting where
spillovers are otherwise unrestricted.
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erate counterintuitive comparative statics. If spillovers potentially disrupt theoretical
predictions, then using estimators whose unbiasedness relies on restricting spillovers
makes it impossible to test this concern. Specifically, if an estimate’s sign conflicts
with the predicted sign of the estimand, this could stem from spillover-induced bias
rather than indicating a flaw in the theory itself.

6.1 DiD with Interference

Let us begin by expanding to allow for interference the potential-outcomes-based
presentation of DiD in Roth et al. (2023). Consider a balanced panel with two time
periods, t = 1, 2. Units are indexed by i = 1, ..., n. Treated units (gi = 1) are treated
only in period 2, whereas untreated units (gi = 0) are never treated. Recall that
g = (g1, ..., gn) ∈ Γ

⋃
{0} ≡ Γ′ is the group assignment vector. In this section, the

assignment in which no one is treated, g = 0, is allowed. The potential outcome of
unit i in period t is Yit(g).

Given g, the potential outcomes discrete analogue to MATTS defined in (3.4), is

MATTS(g) = E[Yi2(g)− Yi2(0)|gi = 1]︸ ︷︷ ︸
ATTS(g)

− E[Yi2(g)− Yi2(0)|gi = 0]︸ ︷︷ ︸ .
ASU(g)

(6.1)

MATTS is the difference between the average effect of treatment among the treated
with spillovers (ATTS) and the average spillover effect among the untreated (ASU).
ATTS is the period 2 difference between the average outcome among the treated
under assignment g and the average potential outcome when no unit is treated. The
ASU is the analogous quantity among the untreated. The differential analogues of
ATTS and ASU are given in definitions (3.2) and (3.3), respectively.

A key challenge in estimating MATTS, ATTS, or ASU is that the potential out-
come in which no one is treated is not observed. To make progress, one typically
identifies an observable estimand which is equal to the target estimand. When this
is the case, say that the observable estimand identifies the unobservable one.

Under parallel trends and no-anticipatory-effects assumptions, the population DiD,

DiD(g) = E[Yi2(g)− Yi1(g)|gi = 1]− E[Yi2(g)− Yi1(g)|gi = 0], (6.2)
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identifies MATTS. The observable population DiD is the “difference-in-differences” of
subpopulation means. Parallel trends asserts that, in the absence of treatment, both
groups would have experienced the same outcome evolution, on average. The no-
anticipatory-effects assumption says that period 1 potential outcomes do not depend
on treatment statuses in period 2. In the formal statement of these assumptions
below, g−i = (g1, ..., gi−1, gi+1, ..., gn) is the treatment statuses of all units but i.

(AS1) No anticipatory effects. Yi1(gi, g−i) = Yi1(g
′
i, g

′
−i) for all i and all g, g′ ∈ Γ′.

(AS2) Parallel Trends. E[Yi2(0)− Yi1(0)|gi = 1] = E[Yi2(0)− Yi1(0)|gi = 0].

These are the analogues to the identification assumptions given in Roth et al. (2023)
when interference is allowed. The no-anticipatory-effects assumption (AS1) states
that neither a unit’s treatment status in period 2 nor others’ treatment statuses in
period 2 have any effect on her outcome in period 1. If there is no interference, then
(AS1) reduces to Yi1(0, g−i) = Yi1(1, g

′
−i) for all i and any g−i, g

′
−i.

Although the concepts are named differently, Butts (2021) also observes that the
population DiD identifies the difference between ATTS and ASU. In that paper, this
observation motivates other estimands of interest which require additional identifica-
tion assumptions. In contrast, MATTS is the primary estimand of interest here. In
addition, I give a proof in the Appendix which clarifies the roles of (AS1) and (AS2),
and give an example below which illustrates the necessity of these assumptions.

Suppose, in addition to (AS1)-(AS2), that the period 1 expected outcomes would
be the same in the two subpopulations in the absence of treatment:

(AS3) Equal pretreatment expected outcomes. E[Yi1(0)|gi = 1] = E[Yi1(0)|gi = 0].

Then MATTS is also identified by the observable population difference-in-means,

DiM(g) = E[Yi2(g)|gi = 1]− E[Yi2(g)|gi = 0]. (6.3)

Finally, if assignment to treatment is completely random, then the parallel trends
and the equal-pretreatment-expected-outcomes assumptions are satisfied. Random
assignment means that, for a population of size N , the number of treated units, Nt,

is fixed, and Nt units are (as if) randomly selected to receive treatment while the
remaining Nu are untreated.

I collect these results in Lemma 3 and Theorem 7. Proofs are in the Appendix.
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Treated Untreated
Post-Treatment (t = 2) 3 5
Pre-Treatment (t = 1) 9 9

Table 1: Infection Rates (% of population)

Lemma 3. For any treatment group size nt ∈ {1, ..., n − 1}, completely random
assignment implies parallel trends (AS2) and equal-pretreatment-expected-outcomes
(AS3).

Theorem 7.

1. Assume (AS1)-(AS2). Then MATTS(g) = DiD(g).

2. Assume (AS1)-(AS3). Then MATTS(g) = DiD(g) = DiM(g).

3. Assume (AS1) and that assignment is completely random. Then MATTS(g) =

DiD(g) = DiM(g).

The intuition behind Theorem 7 can be easily understood through an example.
Suppose a vaccine against an infectious disease is administered to a subset of a popu-
lation. Infection rates are displayed in Table 1. The infection rate is 9 percent in each
group before the vaccine is administered. The change in means among the treated
is 3 − 9 = −6, while the change in means among the untreated is 5 − 9 = −4. The
population DiD is −6− (−4) = −2. Under the assumptions of no anticipatory effects
and parallel trends, the population DiD is interpreted as MATTS—the additional
benefit of the vaccine that the treated receive beyond the any herd immunity effect,
on average. Notice that the population DiM is 3− 5 = −2, which is also interpreted
as MATTS because the pretreatment infection rates are equal.

If, for some reason, the treated know they will be vaccinated in period 2, and
this knowledge causes them to be more lax regarding infection prevention measures
in period 1, the pretreatment infection rate among the treated may increase to, say,
10. In this case, the population DiD is (3− 10)− (5− 9) = −3, but MATTS remains
−2. Thus, the no-anticipatory-effects assumption is necessary.

In the absence of treatment, let the period 2 infection rate be 9 +∆t and 9 +∆u

among the treated and untreated groups, respectively. MATTS is (3−∆t)−(5−∆u) =

−2 − (∆t − ∆u). If infection trends were not parallel, meaning ∆t ̸= ∆u, then the
infection rate in period 2 could be, for example, 7 (∆t = −2) and 9 (∆u = 0) if the
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planned vaccination did not occur, in which case MATTS would be zero, even though
the population DiD remains −2.11

Finally, if the pretreatment infection rate among the treated were 8 (remaining at
9 among the untreated), the population DiD would be (3− 8)− (5− 9) = −1, while
the population DiM would be −2. In this case, only the population DiD identifies
MATTS.

While the focus here is on identification rather than estimation or inference, the
estimation is conceptually straightforward from a superpopulation perspective. As-
sume that treatment is applied to an infinite superpopulation, that both the treated
and untreated subsets are infinite, and that the treated and untreated subsets are
independently sampled. Then the sample analogues to the population DiD and DiM
serve as natural estimators and, by the central limit theorem, have an asymptoti-
cally normal distribution as the sample size grows large. The standard two-way fixed
effects estimator can be used to estimate MATTS.

6.2 Relationship to the No-Interference Case

Suppose there is no interference:

(AS4) No interference. For all i and t = 1, 2, Yit(gi, g−i) = Yit(gi, g
′
−i) for any g−i ̸= g′−i.

Under (AS4), ASU = 0 and ATTS(g) = ATTS(g′) for any g, g′. Then

ATTS(g) = E[Yi2(1, g−i)− Yi2(0, g−i)|gi = 1]

is the canonical average treatment effect among the treated (ATT). Thus, both ATTS
and MATTS generalize the ATT in this sense.

MATTS and ATTS also generalize the canonical average treatment effect (ATE).
To see this, first define the average effect of treatment with spillovers (AETS) as the
average difference between post-treatment outcomes and the potential outcome in
which no one is treated in period 2:

AETS(g) = E[Yi2(g)− Yi2(0)].

11Note that ATTS and ASU are identified by their natural observable estimands if ∆t = 0 and
∆t = 0, respectively. In this case, ATTS is −6 and ASU is −4, but these are strong assumptions.
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This is similar to ATTS, except that the expectation is over the whole population,
not just the treated. Observe that AETS(g) = nt

n
ATTS(g) + nc

n
ASU(g). Also, if all

units are treated, then g is a vector of ones and AETS(1) = E[Yi2(1)− Yi2(0)].
12

The canonical ATE is defined without interference. It is independent of g and can
be written as

ATE = E[Yi2(1, g−i)− Yi2(0, g
′
−i)] ∀g−i, g

′
−i.

This is equivalent to AETS(1) when there is no interference. Furthermore, under
the convention that ASU(1) = 0, we have ATTS(1) = AETS(1) and MATTS(1) =

ATTS(1), which implies MATTS(1) = AETS(1).

This discussion demonstrates that MATTS and ATTS generalize ATT and ATE,
while AETS also generalizes ATE. In terms of identification, however, MATTS relates
to AETS under interference just as ATT relates to ATE in the absence of interference.
Specifically, when there is (no) interference, MATTS (ATT) is identified by the pop-
ulation DiD, and AETS (ATE) is identified by the population DiM under completely
random assignment.13 Moreover, under random assignment, MATTS (ATT) is equal
to AETS (ATE) because both equal the population DiM. These statements do not
hold for ATTS because the population DiD does not identify it.

Other papers use different terminology for these estimands. Hudgens and Halloran
(2008) and Baird et al. (2018) refer to their analogues of the ASU as the indirect
causal effect and the spillover on the nontreated, respectively; ATTS as the total
causal effect and the intention to treat, respectively; and AETS as the overall and
total causal effect, respectively. However, neither paper focuses on MATTS. My goal
in introducing these terms is to clarify (1) the relationship between the DiD settings
with and without interference and (2) the relationship to random assignment, rather
than simply contributing to terminological complexity.

12The differential analogue of AETS follows naturally. Because AETS = nt

n ATTS + nc

n ASU,
simply substitute the expressions for ATTS and ASU from equations (3.2) and (3.3). Note that for
g = 1, AETS(1) = 1

n
d ¯Y (0)
dλ ≡ 1

n

∑n
i=1

dȳi(λ(0))
dλ .

13The proof for the AETS is a minor modification of the proof of Theorem 6.1 in Imbens and
Rubin (2015).

24



7 Applications

I now consider applications of the comparative statics results to testing the profit
maximization hypothesis, oligopoly, contests and symmetric models.

7.1 The Profit Maximization Hypothesis

In the leading example of the first chapter in The Structure of Economics (Silberberg,
1978), which expands on ideas introduced in chapters 2 and 3 of Samuelson (1947),
the claim is that the profit maximizing assumption can be tested by empirically
evaluating whether a firm decreases its output in response to a unit tax. Glossing
over some details which are not relevant to the present paper, if we observe that
output increases, then we can reject the profit maximizing assumption.

In practice, however, to control for confounding factors, a test of this hypothesis
requires a sample of firms that are taxed (the treated group) and a sample that are
not taxed (the untreated group). But if a subset of firms is taxed then this will create
spillovers in the market through price effects. I give a perverse example in which
MATTS is positive even when firms maximize profit. In this case, if the observable
population DiD were incorrectly interpreted as the ATT or the ATE rather than
MATTS, then one would wrongly reject the hypothesis that a unit tax reduces firm
output, and hence wrongly reject the profit maximizing assumption. I also apply the
results of Section 5 to find conditions under which MATTS is negative.

7.1.1 Firms

Consider a population of n firms where each firm i selects output yi ≥ 0 to maximize
profit πi. Firm i’s cost ci(yi) + γiλiyi depends on its output and a unit tax λi > 0.
Production cost ci(yi) is convex, c′′i (yi) ≥ 0 for all yi ≥ 0 and all i. The subscript on
λi allows the tax to be firm-specific. The parameter γi > 0 allows for the actual tax
treatment to differ in magnitude, but not the sign, from the intended treatment.

7.1.2 Imperfect Competition

First consider a model with imperfect competition in which inverse demand for each
firm is linear, pi(y) = ai −

∑n
j ̸=ij=1 bijyj −

1
2
biiyi with bii > 0 for all i. Profit is

πi = pi(y)yi − ci(yi)− γiλiyi.
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Assume a unique interior equilibrium exists. The first order condition for each
firm i = 1, ..., n is

∂πi

∂yi
= ai −

n∑
j=1

bijyj − c′i(yi)− γiλi = 0.

Equilibrium ȳ = (ȳ1, ..., ȳn) is a solution to this system of n equations. Define f i ≡ ∂πi

∂yi

to match the notation from Section 3. The negated Jacobian of the system is

−Dyf(ȳ; λ̄) =


b11 + c′′1(ȳ1) b12 · · · b1n

b21 b22 +c′′2(ȳ2) · · · b2n
...

... . . . ...
bn1 bn2 · · · bnn + c′′n(ȳn)

 .

Notice that the off-diagonal terms of the negated Jacobian can be interpreted as
the slope coefficients of firm demand, or as the change in marginal profit because
∂2πi

∂yi∂yj
= −bij. The latter interpretation generalizes so I use it. The typical element in

the vector of direct treatment effects Dλf(ȳ; λ̄) is −γi < 0.

A perverse example. Let n = 3. Set ci(yi) ≡ 0 and γi = 1 for i = 1, 2, 3. Suppose

p1(y) = a− 1

6
y1, p2(y) = a− 1

2
y2, and p3(y) = a+

5

4
y1 +

5

4
y2 − y3.

for a positive and large enough. Firm 3’s demand is complementary with firm 1 and
2’s output, but firm 1 and firm 2’s demand is independent of the others. These stark
assumptions are designed to illustrate the mechanics of the example.

Equilibrium is the solution to the system of first order conditions:

π1
1(y; γ1, λ1) = a− 1

3
y1 − λ1 = 0,

π2
1(y; γ2, λ2) = a− y2 − λ2 = 0, and (7.1)

π3
1(y; γ3, λ3) = a+

5

4
y1 +

5

4
y2 − 2y3 − λ3 = 0.

The equilibrium quantities are

ȳ1 = 3a− 3λ1, ȳ2 = a− λ2, and ȳ3 = 3a− 15

8
λ1 −

5

8
λ2 −

1

2
λ3.
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If firms 1 and 2 are treated while firm 3 is untreated, then

dȳ1
dλ

= −3,
dȳ2
dλ

= −1, and
dȳ3
dλ

=−5

2
.

Each firm reduces output in equilibrium, yet

MATTS =
−3− 1

2
−
(
−5

2

)
=

1

2
> 0.

In practice, a researcher estimates the population DiD which in turn identifies MATTS
under (AS1) and (AS2). But if the researcher were to interpret the population DiD
as the ATT (or ATE), then the researcher would erroneously reject the hypothesis
that the tax decreases output among the taxed, on average, and thus reject the profit
maximizing hypothesis.

One may take issue in this example with the fact that in firm 3’s demand function,
the slope coefficients on firm 1 and 2’s output (−5/4) is larger in magnitude than the
slope coefficient on firm 3’s output (1). There are two responses to this concern.
First, this type of situation is ruled out in order to guarantee that MATTS is strictly
negative. Second, I can extend this example to n firms where firms 1 to n − 1

experience no spillover effects (bij = 0 for i = 1, ..., n − 1 and j ̸= i) and firm n

experiences anonymous spillover effects (bnj = βn < 0 for all j ̸= n). Then, by
Corollary 2, MATTS is strictly negative if and only if bnn < −(n− 1)β = (n− 1)|β|.
Thus, whenever n > 3 we can have |β| < bnn and MATTS strictly positive.

Another possible objection to this example is that, in the context of random
assignment, the heterogeneity in firms’ strategic interaction by realized treatment
status would likely be detected in some balance test. However, each group assignment
vector is equally likely under random assignment, and the results in this paper restrict
the sign of MATTS for any assignment. Thus, if the randomization procedure is
known to be sound, sign restrictions on MATTS can, and in fact should, be tested
despite the outcome of any balance test.

Disciplining MATTS. I now apply the results of Section 5 to find conditions
under which MATTS is negative. In each case below, Corollary 1 applies and other
traditional comparative statics results are available—I refer the reader to the original
Theorems for them. Recall that these results are valid for any treated subset of firms.
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• Corollary 2. Suppose spillovers are anonymous-by-unit, −bij = −βi ∀i, j ̸= i.

Then MATTS is strictly negative if, and only if, ∀i,bii + c′′i (ȳi) > −βi if − βi > 0

bii + c′′i (ȳi) > −(n− 1)βi if − βi ≤ 0.

• Theorem 4. Suppose spillovers are positive, −bij ≥ 0 ∀i, j ̸= i. Then MATTS
is strictly negative if

bii + c′′i (ȳi) > (n− 1)max
j ̸=i

{−bij} ∀i. (7.2)

• Theorem 5 and Lemma 2. Suppose spillovers are strictly negative, −bij < 0

∀i, j ̸= i. Then MATTS is strictly negative if, ∀i, j ̸= i,

0 < m ≤ bij/(bii+c′′i (ȳi)) ≤ M < 1,

where M2 = sm + (1 − s)m2 with s ≤ 1
n−2

. Alternatively, MATTS is strictly
negative if m = M or n = 2.

• Theorem 6. MATTS is strictly negative if

bii + c′′i (ȳi) > (n− 1)2
∑
j ̸=i

|−bij| ∀i. (7.3)

The impact of increasing output on own marginal profit is ∂2πi

∂y2i
= bii + c′′i (ȳi). These

restrictions thus limit the impact on a firm’s marginal profit of increases in rivals’
output relative to an increase in own output.

Because ∂2πi

∂yi∂yj
= −bij, it follows that competition is characterized by strategic

complements if −bij ≥ 0 for all i, j ̸= i. In this case, Corollary 2 and Theorem 4
apply. If interactions are also anonymous-by-unit, the condition in Theorem 4 imposes
a penalty of (n−1) if we fail to take into account this homogeneity in strategic effects.
Observe that Theorem 6 also applies, but condition (7.3) is stronger than condition
(7.2) because it fails to account for sign homogeneity.

Competition is characterized by strategic substitutes if −bij ≤ 0 for all i, j ̸= i.
In this case, Corollary 2 and Theorems 5 and 6 apply. The textbook homogeneous
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goods Cournot oligopoly features −bij = −β < 0, with bii = 2β and ci(yi) = c(yi).

This satisfies the conditions of Theorem 5 (m = M). Also observe that if interactions
are anonymous-by-unit, condition (7.3) imposes a penalty of (n − 1)2 if we fail to
account for this homogeneity.

Generalization. While this analysis assumed linear demand and convex costs, it
generalizes easily. Specifically, the negated Jacobian is the matrix of cross-partials
− ∂2πi

∂yi∂yj
. The results obtain if in each of the conditions we replace bij with − ∂2πi

∂yi∂yj
for

the off-diagonal terms (i ̸= j) and replace the diagonal terms, bii+ c′′i (ȳi), with −∂2πi

∂y2i
.

7.1.3 Perfect Competition

Now suppose firms are price-takers and produce a homogeneous good. Firms select
output to maximize profit taking price as given,

max
yi

pyi − ci(yi)− γiλiyi.

Assume ci(yi) is strictly increasing, strictly convex, and that c′′i (0) = 0. The profit-
maximizing quantities satisfy

p− c′i(yi)− γiλi = 0 for i = 1, ..., n.

Let inverse market demand be p = D(
∑n

i=1 yi) for D : R → R a strictly decreasing
and differentiable function. Recall Y ≡

∑n
i=1 yi and substitute this into the last

display to write
D(Y )− c′i(yi)− γiλi = 0 for i = 1, ..., n.

Equilibrium outputs are a solution to this system. The elements on the main
diagonal of the negated Jacobian are −D′(Ȳ ) + c′′i (ȳi) and all of the off-diagonal
terms equal −D′(Ȳ ). Thus, Theorem 5 applies if costs are convex, c′′i (ȳi) > 0 for all
i.14 Any tax increase on any nontrivial subset of firms implies that MATTS is strictly
negative and total output decreases. Hence, market price increases whenever any
subset of firms is taxed. Moreover, the output of every treated firm (i.e., those whose
tax increases) decreases and the output of every untreated firm increases. In this

14If c′′i (ȳi) ≤ 0 for some i then Theorem 5.1 can be applied if −D′(Ȳ ) + c′′i (ȳi) > 0.
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way, perfect competition is the ideal setting in which to test the profit maximization
hypothesis via the comparative statics of taxation.

7.1.4 Discussion

While many models of firm interaction—such as perfect competition and the text-
book Cournot oligopoly—guarantee that MATTS is negative, the perverse example
demonstrates that MATTS can be positive in some settings. Thus, the Silberberg-
Samuelson proposed test of the profit maximization hypothesis must also account
for firm interaction if the researcher employs the DiD framework. If the estimate of
MATTS is statistically significant and positive for any treatment group, then we can
reject the joint assumptions concerning profit maximization and firm interaction.

Existing comparative statics results for oligopoly do not focus on MATTS. More-
over, these papers often impose versions of diagonal dominance, symmetry, aggrega-
tive interaction effects, strategic complements or strategic substitutes.15 These as-
sumptions amount to different ways of limiting strategic heterogeneity. Although I
impose differentiability at equilibrium, the framework can answer traditional com-
parative statics questions and is flexible enough to allow for these assumptions, as
well as other types of strategic (and nonstrategic) interaction. Moreover, this unified
approach clarifies how strategic heterogeneity influences comparative statics.

7.2 Symmetry, Anonymous-by-Unit Spillovers, and Contests

In this section I use contests to illustrate how symmetric equilibria give rise to
anonymous-by-unit spillovers. There are n contestants who exert effort yi to win
a prize whose value is Vi > 0 to contestant i. The contest success function (CSF)
is the probability that contestant i wins the prize, pi(y), as a function of the effort
vector y. Letting ci(yi) be the cost of effort, the expected payoff to contestant i is

ui(y) = pi(y)Vi − ci(yi).

15See, for example, Dixit (1986), Gama and Rietzke (2019), Acemoglu and Jensen (2013), Topkis
(2011), L. C. Corchón (1994), Jinji (2014), Vives (1990), Vives (1999), and Milgrom and Roberts
(1990).
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Assume that the CSF is symmetric in y−i. That is, for all i = 1, ..., n,

pi(yi; y1, ..., yi−1, yi+1, ..., yn) = pi(yi; yπ(1), ..., yπ(i−1), yπ(i+1), ..., yπ(n))

for any permutation π : N → N of efforts other than i. The logit form (e.g., Dixit,
1987),

pi(y) =
h(yi)

ri +
∑n

j=1 h(yj)
, (7.4)

where h is an increasing function and ri ≥ 0 is a discount rate, is symmetric in this
sense. Tullock (1980) studies the case where h(yi) = yαi for α > 0 and ri = 0 ∀ i.16

While the results of the paper can be applied to asymmetric equilibria, I focus on
symmetric, interior equilibria to highlight a particularly powerful result. In this case,
the FOCs are

f i(y) ≡ ∂ui(y)

∂y
=

∂pi(y)

∂yi
Vi − c′i(yi) = 0 for i = 1, ..., n,

and equilibrium ȳ is a solution to this system with the property that ȳi = y∗ for all
i. Then −Dyf

i(ȳ) has typical diagonal and off-diagonal elements

−f i
i (ȳ) = −∂2pi(ȳ)

∂ȳ2i
Vi + c′′i (ȳi) and − f i

j(ȳ) = −∂2pi(ȳ)

∂ȳi∂ȳj
Vi,

respectively. Assume f i
i (ȳ) < 0, which is satisfied if pi(y) is concave in own effort yi at

ȳ and ci(yi) is convex at ȳi. Observe that the symmetry of pi(y) in y−i is preserved in
its own partial derivative, ∂pi(y)

∂yi
.17 Then the cross-partials evaluated at a symmetric

equilibrium have the property that f i
j(ȳ) = f i

k(ȳ) for all i and all j ̸= k ̸= i.18

Hence, spillovers are anonymous-by-unit at equilibrium and we can apply the results
in Section 5.1.

To this end, suppose that some subset of contestants is treated and that the direct
treatment effect is positive for any treated contestant. Examples of such treatments

16See Beviá and L. Corchón, 2024 for a discussion of other CSFs.
17To see this, note that symmetry of pi(y) in y−i implies pi(yi + h, y−i) = pi(yi + h, yπ(−i)) for

any h ∈ R. Thus, limh→0
pi(yi+h,y−i)−pi(yi,y−i)

h = limh→0
pi(yi+h,yπ(−i))−pi(yi,yπ(−i))

h .
18To see this, let y−ijk denote efforts with indexes other than i, j, or k. Then symmetry in y−i and

the fact that ȳj = ȳk = y∗ imply ∂pi

∂yi
(ȳi; ȳj + h, ȳk, ȳ−ijk) =

∂pi

∂yi
(ȳi; ȳj , ȳk + h, ȳ−ijk) for any h ∈ R.

Thus, limh→0

∂pi
∂yi

(ȳi;ȳj+h,ȳk,ȳ−ijk)−
∂pi
∂yi

(ȳi;ȳj ,ȳk,ȳ−ijk)

h = limh→0

∂pi
∂yi

(ȳi;ȳj ,ȳk+h,ȳ−ijk)−
∂pi
∂yi

(ȳi;ȳj ,ȳk,ȳ−ijk)

h .
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include an increase in the value of the prize Vi, an increase in the probability of
winning pi(y), or a decrease in the effort cost. Then by Corollary 2, MATTS is
positive if, and only if, −Dyf

i(y) is a B-matrix, or
(

∂2pi(ȳ)

∂ȳ2i
− ∂2pi(ȳ)

∂ȳi∂ȳj

)
Vi < c′′i (ȳi) if ∂2pi(ȳ)

∂ȳi∂ȳj
Vi ≤ 0 and(

∂2pi(ȳ)

∂ȳ2i
+ (n− 1)∂

2pi(ȳ)
∂ȳi∂ȳj

)
Vi < c′′i (ȳi) if ∂2pi(ȳ)

∂ȳi∂ȳj
Vi > 0.

Suppose costs are convex at ȳ, c′′i (ȳi) ≥ 0. Then if the marginal win probability
decreases with rivals’ effort, this assumption is satisfied if ∂2pi(ȳ)

∂ȳ2i
< ∂2pi(ȳ)

∂ȳi∂ȳj
, that is, if

increasing own effort lowers the marginal win probability by more than it decreases
when any rival increases effort. On the other hand, if the marginal win probability
increases with rival effort, this assumption is satisfied if ∂2pi(ȳ)

∂ȳ2i
< −(n−1)∂

2pi(ȳ)
∂ȳi∂ȳj

, that
is, if an increase in own effort lowers the marginal win probability by more than it
increases when every rival increases effort.

If these conditions are met then Corollary 1 and Theorem 3 apply as well. We
conclude that if only one contestant receives treatment, then her effort increases by a
magnitude greater than by which any other contestant’s effort changes. If one or more
contestant is treated, then both the average effort among the treated and the total
effort increases. If, in addition, ∂2pi(ȳ)

∂ȳi∂ȳj
< 0 for all i, then the average effort among the

untreated decreases; while if ∂2pi(ȳ)
∂ȳi∂ȳj

> 0 for all i, then the average effort among the
untreated increases. In the latter case, the average effort among the treated increases
by more than the average effort among the untreated because MATTS is positive.

7.2.1 Discussion

Nti (1997), Gama and Rietzke (2019), and Escobar (2025) study comparative statics
in contests in the case where every player is treated simultaneously. The predictions
from this type of analysis are not testable using reduced form methods because treated
and untreated groups cannot be compared. Acemoglu and Jensen (2013) allow for
variations of (7.4) which preserve its aggregative structure. In contrast, the analysis
in this section allows for any CSF which is symmetric in y−i, and other results in this
paper can be applied to the nonsymmetric case. None of these papers directly study
the comparative statics of MATTS or average outcomes.

The symmetric case is of fundamental interest in the contest literature because
it is so widely studied. Whether this model is empirically relevant remains an open
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question, as there are several difficulties with estimation in no small part due to
spillovers (Jia et al., 2013). However, as long as “effort” can be measured convincingly,
this paper shows that the symmetric model is rejectable using a DiD framework by
testing a sign restriction on MATTS.

I also note that the analysis for symmetric contests at symmetric equilibria trans-
lates directly to any symmetric game at symmetric equilibria where the IFT can be
applied.19 For then the first-order conditions are symmetric in y−i and spillovers are
anonymous-by-unit at equilibrium. In fact, fully symmetric payoffs are not necessary,
but only that payoffs are symmetric in y−i. Moreover, this insight can be applied
to any model in which equation f i(y;λ) is symmetric in y−i, not just games. For
example, the model of perfect competition in Section 7.1.3 is symmetric in this sense.

8 Conclusion

This paper expands our ability to test economic theory using reduced form estimation.
It takes another step towards fulfilling Samuelson’s (1947) vision that comparative
statics analysis should be able to deliver “fruitful” or “meaningful” theorems which can
be empirically rejected.20 The key findings are that the sample DiD is an unbiased
estimator of MATTS even when spillovers are unrestricted and, somewhat surprisingly
due to the a priori complexity of the problem, the sign of MATTS can be restricted for
any treatment group. Moreover, in many cases the conditions under which MATTS
can be signed are the same or only slightly stronger than the conditions under which
traditional comparative statics can be signed for general n.

In addition to its function in empirical hypothesis testing, MATTS is also useful
in understanding the mechanisms and implications of a model. The analysis yields
new insights to old questions while also posing and answering new questions. These
insights are facilitated by the observation that B-matrices play an important role in
signing comparative statics. Developing this connection requires us to derive new re-
sults for the class of B-matrices, especially with respect to conditions on the elements
of a matrix under which its inverse is a B-matrix by columns.

19See p. 115 in Moulin (1986) for conditions under which a symmetric game has a symmetric
equilibrium. Note that the smoothness assumptions associated with the IFT need only be applied
at the equilibrium, so this allows for payoff functions which are not globally differentiable.

20I opt for the term rejected rather than refuted because Type I errors are not ruled out by the
methods outlined in this paper.
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A Appendix

Proof of Theorem 1. (1) For a given g ∈ Γ,

ATTS =
1

nt

∑
r:gr=1

(∑
s:gs=1

δrsf
s
λ

)
=

1

nt

∑
s:gs=1

( ∑
r:gr=1

δrs

)
f s
λ ≥ 0

whenever f s
λ ≥ 0 for all s : gs = 1 iff

∑
r:gr=1 δrs ≥ 0 for all s : gs = 1. Since the result

is for any g ∈ Γ, it follows that ATTS ≥ 0 whenever Dλf ≥ 0 iff
∑

r:gr=1 δrs ≥ 0 for
all s :gs = 1 and all g ∈ Γ.

In addition, it is easy to see that, for a given g ∈ Γ, ATTS > 0 whenever f s
λ > 0

for all s : gs = 1 iff
∑

r:gr=1 δrs ≥ 0 for all s : gs = 1 with strict inequality for at least
one s : gs = 1. The result follows since this must be true for any g ∈ Γ.

(2) The proof is similar to that of part (1) when nt < n. If nt = n, then ASU = 0

by assumption.
(3) For a given g ∈ Γ such that nt < n,

MATTS =
1

nt

∑
s:gs=1

( ∑
r:gr=1

δrs

)
f s
λ −

1

nu

∑
s:gs=1

( ∑
r:gr=0

δrs

)
f s
λ

=
∑
s:gs=1

(
1

nt

∑
r:gr=1

δrs −
1

nu

∑
r:gr=0

δrs

)
f s
λ ≥ 0

whenever f s
λ ≥ 0 for s : gs = 1 iff 1

nt

∑
r:gr=1 δrs ≥

1
nu

∑
r:gr=0 δrs for all s : gs = 1. If

nt = n so that g = (1, 1, ..., 1), MATTS = 1
n

∑n
s=1 (

∑n
r=1 δrs) f

s
λ ≥ 0 iff

∑n
r=1 δrs ≥ 0

for s = 1, ..., n.

Since the result is for any g ∈ Γ, it follows that MATTS ≥ 0 whenever Dλf ≥ 0

iff
∑

r:gr=1 δrs ≥ 0 for all s = 1, ..., n. A similar argument proves the result which
characterizes MATTS > 0.

Proof of Theorem 2. To prove this result, I will show that

1

nt

∑
r:gr=1

δrs ≥
1

nu

∑
r:gr=0

δrs for all s : gs = 1, any g ∈ Γ with 1 ≤nt < n; and (A.1)

1

n

n∑
r=1

δrs ≥ 0 for s = 1, ..., n (A.2)
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is equivalent to the definition of a B0-matrix by columns:

1

n

n∑
r=1

δrs ≥ c+s for s = 1, ..., n. (A.3)

The result for B-matrices is obtained by using strict rather than weak inequalities in
the “⇐” direction.

(⇒) Fix g ∈ Γ. If nt = n− 1, then (A.1) implies, for each s = 1, ..., n,

1

n− 1

∑
r:gr=1

δrs ≥ δks for k : gk = 0.

Because this is true for any assignment g ∈ Γ, then for each s, k = 1, ..., n and k ̸= s,

1

n− 1

n∑
r ̸=k,r=1

δrs ≥ δks ⇐⇒
n∑

r ̸=k,r=1

δrs ≥ (n− 1)δks ⇐⇒
n∑

r=1

δrs ≥ nδks.

Combining these n− 1 inequalities with (A.2) results in (A.3).
(⇐) (A.3) directly implies (A.2). To show that (A.1) is also implied, let 1 ≤ nt < n

and fix g ∈ Γ. Then for s, k = 1, ..., n and k ̸= s,

n∑
r=1

δrs ≥ nδks ⇐⇒
∑

r:gr=1

δrs ≥ nδks −
∑

r:gr=0

δrs.

Now fix a column s where s : gs = 1 and sum over the nu > 0 inequalities with k such
that gk = 0 :

nu

∑
r:gr=1

δrs ≥ n
∑

k:gk=0

δks − nu

∑
r:gr=0

δrs

nu

∑
r:gr=1

δrs ≥ nt

∑
r:gr=0

δrs

1

nt

∑
r:gr=1

δrs ≥
1

nu

∑
r:gr=0

δrs.

Because this inequality holds for any s : gs = 1 and any g ∈ Γ, it must hold for
s = 1, ..., n, as desired.
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Proof of Lemma 1. I establish a few facts to facilitate the proof. From −Dyf [−Dyf ]
−1 =

I it follows that, for i ̸= j and j = 1, ..., n,
∑n

m=1−f i
mδmj = −αiδij−βi

∑
m̸=i δmj = 0.

The last equality implies

δij = −βi

αi

∑
m̸=i

δmj. (A.4)

Next, it follows from (3.1) that D(ȳ) equals the jth column of −[Dyf ]
−1 when g

has all components equal to zero, except for a 1 in the jth position, and Dλf is a
vector of ones. In this case, the ith element of D(ȳ) is dyi

dλ
= δij, so by (5.4), the sum

of each column j = 1, ..., n of −[Dyf ]
−1 is

n∑
m=1

δmj = − 1

Γ

1

αj − βj

. (A.5)

Next, for i ̸= j and j = 1, ..., n, we have from (A.4) that

∑
m ̸=i

δmj =
n∑

m=1

δmj − δij =
n∑

m=1

δmj +
βi

αi

∑
m ̸=i

δmj.

This implies for i ̸= j and j = 1, ..., n that

∑
m̸=i

δmj =
αi

αi − βi

n∑
m=1

δmj. (A.6)

Finally, note that
∑n

m=1 δmj > nδij for i ̸= j iff
∑

m ̸=i δmj > (n− 1)δij, which by
(A.4) is equivalent to

∑
m ̸=i

δmj > −(n− 1)
βi

αi

∑
m̸=i

δmj. (A.7)

(⇒) Suppose −Dλf is a B-matrix. To show that [−Dλf ]
−1 is a B-matrix by

columns, we must show
∑n

m=1 δmj > nmax{0, δij|i ̸= j} for all j. In the main text it
was shown in the paragraph after (5.4) that Γ > 0. We also have, for all j, αj < 0

and αj − βj < 0 because −Dλf is a B-matrix. Thus,
∑n

m=1 δmj > 0 by (A.5).
These facts and (A.6) also imply, for i ̸= j and j = 1, ..., n, that

∑
m ̸=i δmj =

αi

αi−βi

∑n
m=1 δmj > 0. Then inequality (A.7) reduces to αi < −(n − 1)βi, which is
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implied because A is a B-matrix. Thus,
∑n

m=1 δmj > nδij for all i ̸= j and j = 1, ..., n.

Hence, [−Dλf ]
−1 is a B-matrix by columns.

(⇐) Now suppose [−Dyf ]
−1 is a B-matrix by columns. We wish to show thatαi < βi if βi ≤ 0

αi < −(n− 1)βi if βi > 0.

To this end, note that (A.5) implies implies sgn
(
− 1

Γ

)
=sgn

(
1

αj−βj

)
∀j. It follows

that either αj − βj > 0 ∀j or αj − βj < 0 ∀j.
Suppose αj − βj < 0 ∀j. Because [−Dyf ]

−1 is a B-matrix by columns, for j =

1, ..., n,
n∑

m=1

δmj > nδij for all i ̸= j.

Subtract δij from both sides and then substitute (A.4) and (A.6) for δij and
∑

m ̸=i δmj,
respectively, to get, for j = 1, ..., n and all i ̸= j∑

m̸=i

δmj > (n− 1)δij

αi

αi − βi

n∑
m=1

δmj > −(n− 1)
βi

αi − βi

n∑
m=1

δmj

Divide both sides by
∑n

m=1 δmj/(αi − βi) to get, for j = 1, ..., n and all i ̸= j,
αi < −(n− 1)βi. Hence, −Dyf is a B-matrix.

Now suppose αj − βj > 0 ∀j. The diagonal terms of the inverse of a B-matrix are
positive (Christensen, 2019), so we must have αj < 0 since αj ̸= 0 by assumption.
It follows that βj < 0 and (A.6) implies

∑
m ̸=i δmj < 0. Thus, (A.7) is equivalent to

αi > −(n− 1)βi > 0 which contradicts the fact that αi < 0. Thus, αj − βj < 0 ∀j.

Proof of Theorem 4. (1) By equation (3.1), −DyfD(ȳ) = GDλf. Because −Dyf

is a Z-matrix and GDλf ≥ 0, it follows that D(ȳ) ≥ 0 if and only if −Dyf is an
M -matrix (Plemmons, 1977). This implies that ATTS and ASU are positive.

(2) By Theorem 2 and Corollary 1 we need to show that the inverse of −Dyf is a
B-matrix by columns, or

∑
j δij > nc+j for all j = 1, ..., n.

As noted in the text following the Theorem, the conditions imply that −Dyf is
an M -matrix, so the elements of its inverse are all positive, δij ≥ 0 ∀i, j. Then notice
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that −Dyf [−Dyf ]
−1 = I implies that for all j = 1, ..., n and any i ̸= j,

−f i
i δij =

∑
m̸=i

f i
mδmj ≤ max

m̸=i
{f i

m}
∑
m̸=i

δmj

⇒ (n− 1)δij ≤
n− 1

−f i
i

max
m ̸=i

{f i
m}
∑
m ̸=i

δmj.

Because −f i
i > (n− 1)maxm ̸=i{f i

m} we have n−1
−f i

i
maxm ̸=i{f i

m} < 1. Thus,

0 ≤ (n− 1)δij <
∑
m̸=i

δmj =⇒ 0 ≤ nδij <

n∑
m=1

δmj,

as desired.

Proof of Lemma 2. Let H be the diagonal matrix with diagonal elements −1/f i
i .

Then −HDyf(ȳ; λ̄) is a strictly positive matrix with a unit diagonal. It follows from
Willoughby (1977) that −[HDyf ]

−1 = −Dyf
−1H−1 is a SDD (by rows and columns)

M -matrix. H−1 is a diagonal matrix with diagonal elements −f i
i > 0, so −Dyf

−1

has the same sign pattern as −Dyf
−1H−1. Then because −Dyf ≥ 0, −Dyf

−1 is an
M -matrix.

The fact that −Dyf
−1H−1 is SDD by columns implies that for j = 1, ..., n,

|δjj|
(
−f j

j

)
=
∣∣δjjf j

j

∣∣ >∑
i ̸=j

∣∣δijf j
j

∣∣ = (−f j
j

)∑
i ̸=j

|δij| .

Hence, |δjj| >
∑n

i ̸=j |δij| , which proves that [−Dyf ]
−1 is SDD by columns. A similar

argument shows that [−Dyf ]
−1 is SDD by rows.

Proof of Theorem 5.
Lemma 2 implies [−Dyf ]

−1 is SDD by columns. By the discussion in the main text
immediately following Theorem 2, this implies [−Dyf ]

−1 is a B-matrix by columns.
Then by Theorem 2, MATTS> 0 for any assignment g ∈ Γ whenever Dλf > 0. The
results of Corollary 1 therefore apply.

The fact that −Dyf
−1 is an M -matrix means that its off-diagonal terms are nega-

tive. Thus, Theorem 1 implies ASU ≤ 0 for any assignment g ∈ Γ whenever Dλf > 0.
Finally, dȳi

dλ
=
∑

j δijf
j
λgj for all i. It follows from δij ≤ 0 ∀i ̸= j that dȳi

dλ
≤ 0 ∀i such

that gi = 0. And it follows from δii > 0 and the fact that Dyf
−1 is SDD by rows
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that dȳi
dλ

> 0 ∀i such that gi = 1 when f j
λ = f̄λ > 0 for all j.

Proof of Theorem 6. Given (5.8), the fact that − [Dyf ]
−1 is a SDD matrix by

columns is immediate. To see that it is also a B-matrix by columns, observe that∑
i

δij = δjj +
∑
i ̸=j

δij > (n− 1)
∑
i ̸=j

|δij|+
∑
i ̸=j

δij =
∑
i ̸=j

((n− 1) |δij|+ δij) ≥ 0,

because each term in the last sum is positive. Moreover, for every k ̸= j,

δjj +
∑
i ̸=j

δij − nδkj >
∑
i ̸=j

((n− 1) |δij|+ δij)− nδkj

= (n− 1) |δkj| − (n− 1)δkj +
∑
i ̸=j,k

((n− 1) |δij|+ δij) ≥ 0.

It follows that, for j = 1, ..., n,
∑

i δij > nc+j , as desired. To prove that inequalities
(5.7) imply that −Dyf is a B-matrix, use the same approach but replace (n−1) with
(n− 1)2 in the first inequality of each step.

I now show that inequalities (5.7) imply inequalities (5.8). Because −Dyf is a
B-matrix, it is invertible, has a strictly positive diagonal, and [−Dyf ]

−1 has a strictly
positive diagonal, or δjj > 0 ∀j. Because it is SDD by rows, we know from Corollary
1 in Norris et al. (2023) that

|δij| < d∗ |δjj| = d∗δjj

for all j, i ̸= j, where d∗ = maxi

{∑
j ̸=i|−f i

j|
−f i

i

}
.21 If d∗ = 0, then −Dyf is a diagonal

matrix and the result is trivial. Assume d∗ > 0. Then for any j, take the sum over
i ̸= j to get

∑
i ̸=j

|δij| < (n− 1)d∗δjj =⇒ 1

(n− 1)d∗

∑
i ̸=j

|δij| < δjj.

21In fact, Norris et al. (2023) assume the Jacobian is SDD by columns and prove the analogous
implication holds for off-diagonal elements of a given row of the Jacobian inverse. By transposing
the Jacobian so that it is SDD by rows, their result applies to the transposed Jacobian inverse. That
is, it applies to the off-diagonal elements of a given column of the Jacobian inverse, as it is stated
here. Their result improves on the bound from Ostrowski (1952) who showed that δjj > |δij | for all
j, i ̸= j.
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Condition (5.7) implies 1
(n−1)d∗

> n− 1. This completes the proof.

Proof of Lemma 3. We first show that randomization implies parallel trends. To

this end, define Y ∆
it (0) = Yi2(0) − Yi1(0). There are

(
n

nt

)
ways to draw nt units.

Let Dj(nt) be the set of nt indexes in draw j. The expected value of Y ∆
it (0) in draw

j is 1
nt

∑
i∈Dj

Y ∆
it (0). It follows that

E[Y ∆
it (0)|gi = 1] =

1(
n

nt

)∑
j

 1

nt

∑
i∈Dj(nt)

Y ∆
it (0)

 =
1(
n

nt

) 1

nt

∑
j

 ∑
i∈Dj(nt)

Y ∆
it (0)

 .

Across the set of all draws of size nt, a given index i appears

(
n− 1

nt − 1

)
times.

To count this, note that if i appears in a draw, then there (n−1) indexes left to select
for the remaining (nt − 1) indexes. This is so for each i ∈ {1, ..., n}. Continuing the
chain of equalities from above we thus have

E[Y ∆
it (0)|gi = 1] =

1(
n

nt

) 1

nt

(
n− 1

nt − 1

)
n∑

i=1

Y ∆
it (0)

=
nt!(n− nt)!

n!

1

nt

(n− 1)!

(nt − 1)!(n− nt)!

n∑
i=1

Y ∆
it (0)

=
1

n

n∑
i=1

Y ∆
it (0)

= E[Y ∆
it (0)].

Because this result holds for an arbitrary but fixed number of units, it follows that
E[Y ∆

it (0)|gi = 0] = E[Y ∆
it (0)] as well. Thus, E[Y ∆

it (0)|gi = 1] = E[Y ∆
it (0)|gi = 0], as

desired.
To prove E[Yi1(0)|gi = 1] = E[Yi1(0)|gi = 0] under randomization, swap Y ∆

it (0) for
Yi1(0) in the previous argument.
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Proof of Theorem 7. The no-anticipatory-effects assumption (AS1) implies22

E[Yi1(0)|gi = 1] = E[Yi1(g)|gi = 1] and E[Yi1(0)|gi = 0] = E[Yi1(g)|gi = 0].

Substitute this into assumption (AS2) and rearrange to show that, in the absence of
treatment, the difference in average outcomes between the treated and untreated in
period 2 is identified by the observed difference in period 1:

E[Yi2(0)|gi = 0]− E[Yi2(0)|gi = 1] = E[Yi1(g)|gi = 0]− E[Yi1(g)|gi = 1].

Now re-arrange the right hand side of (6.1), substitute in the last result, and
re-arrange a final time to prove part 1:

MATTS(g) = (E[Yi2(g)|gi = 1]− E[Y i2(g)|gi = 0]) + (E[Yi2(0)|gi = 0]− E[Yi2(0)|gi = 1])

= (E[Yi2(g)|gi = 1]− E[Yi2(g)|gi = 0]) + (E[Yi1(g)|gi = 0]− E[Yi1(g)|gi = 1])

= E[Yi2(g)− Yi1(g)|gi = 1]− E[Yi2(g)− Yi1(g)|gi = 0]

= DiD(g).

To prove part 2, note that, by the no-anticipatory-effects assumption, (AS3) is
equivalent to E[Yi1(g)|gi = 1] = E[Yi1(g)|gi = 0]. Thus, under parallel trends, the
DiM identifies MATTS:

MATTS(g) = DiD(g)

= E[Yi2(g)− Yi1(g)|gi = 1]− E[Yi2(g)− Yi1(g)|gi = 0]

= E[Yi2(g)|gi = 1]− E[Yi2(g)|gi = 0]− (E[Yi1(g)|gi = 1]− E[Yi1(g)|gi = 0])

= E[Yi2(g)|gi = 1]− E[Yi2(g)|gi = 0]

= DiM(g).

Part 3 follows from Lemma 3 and part 2.

22In fact, (AS1) can be relaxed to this form, but we keep (AS1) for expositional convenience.
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