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The stable unit treatment value assumption (SUTVA) in causal estimation rules
out spillover effects, but spillover effects are the hallmark of many economic models.
Testing model predictions with techniques that employ SUTVA are thus problematic.
To address this issue, we first show that without the no interference component of
SUTVA, the population difference-in-difference (DiD) identifies the difference in the
average potential outcomes between the treated and untreated. We call this estimand
the marginal average treatment effect among the treated with spillovers (MATTS).
Then, in the context of a model whose equilibrium is characterized by a system of
smooth equations, we provide comparative statics results which restrict the sign of
MATTS. Specifically, we show that MATTS is positive for any nontrivial treatment
group whenever treatment has a strictly positive direct effect if and only if the inverse
of the negated Jacobian is a B0-matrix by columns. We then provide several conditions
on the Jacobian such that its negated inverse is a B-matrix by columns. Additional
related results are presented. These predictions can be tested directly within the DiD
framework even when the SUTVA is violated. Consequently, the results in this paper
render economic models rejectable with reduced form DiD methods.

JEL Codes: C31, C33, C65, C72, D21, L21
Keywords: Comparative statics, difference-in-differences, SUTVA, spillovers, profit

maximization hypothesis, refutability, B-matrix

∗fchristensen@towson.edu. Department of Economics, Towson University, 8000 York Rd., Towson, MD
21252. I gratefully acknowldge financial support from the Towson University CBE Faculty Development &
Research Committee.



1 Introduction

The canonical difference-in-differences (DiD) framework invokes the stable unit treatment
value assumption (SUTVA) which rules out spillover effects.1 Spillovers are a key feature of
many economic models, so this assumption constrains the set of testable comparative statics
predictions using the DiD framework.

This paper ameliorates this issue in two steps. First, we reassess the causal interpretation
of the observed population DiD when the no interference component of SUTVA is dropped.
This process identifies a class of comparative statics predictions that are testable when
spillovers are present. Second, we develop analytical results for this class of predictions for
any model whose equilibrium can be expressed as a system of differentiable equations.

The DiD framework is used to test the effect of some policy or treatment on an outcome
of interest. In the canonical approach, the sample is partitioned in the treated and untreated.
Average outcomes by treatment status are calculated in period 1 before treatment and again
in period 2 after treatment. The untreated group—sometimes called the control group—is
used as a proxy for what would have happened to the units in the treatment group in period
2 if treatment had not occurred. The observed population DiD in this setting is the difference
in the change in average outcomes among the treated and the change in average outcomes
among the untreated. Under SUTVA, the population DiD identifies the average treatment
effect on the treated (ATT).

Absent SUTVA, a policy treatment can have an impact on the untreated through spillover
effects. For example, a unit tax applied to only some firms in an industry will increase
market prices, and the higher prices will impact the strategic decisions of untaxed firms
(the spillover effect on the untreated). When spillovers such as these are present, we show
in Section 3 below that the observed population DiD identifies the difference between the
average treatment effect on the treated with spillovers and the average spillover effect on the
untreated, or the marginal average treatment effect on the treated with spillovers (MATTS).

If the population DiD is incorrectly interpreted as the ATT when spillovers are present,
then it has a disturbing sign reversal property : the treatment effect can be positive for every
unit while the population DiD is negative. One implication is that many traditional compar-
ative statics predictions are untestable. A related implication is that canonical interpretation
of the estimate of the population DiD may lead to a false rejection of a theory.

To illustrate these ideas, consider the first chapter of The Structure of Economics in
which Silberberg (1978) demonstrates how comparatives statics analysis can be used to test

1Depending on the context, spillover effects may be called equilibrium effects, strategic effects, network
effects, indirect effects, social interactions, peer effects, or something else.
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the assumptions of a theory. In the leading example, the claim is that the profit maximizing
assumption can be tested by evaluating a firm’s response to a unit tax. A tax would cause
the output of a profit maximizing firm to decrease. So, to simplify a bit, if instead we observe
that output increases, then we can reject the profit maximizing assumption.

In practice, however, a test of this hypothesis needs observations of a firm at two points
in time over which the tax varies. Other unobservable factors may change between these two
points of observation, so the empiricist must control for these unobservables in some way.
The DiD framework accomplishes this objective but requires a treated and untreated group,
and thus a sample of more than one firm.

For simplicity, consider a 3-firm differentiated oligopoly in which the only variable that
changes between two periods of observation is the unit tax. A formal model is developed in
Section 8, but for now a summary discussion suffices. Suppose that the equilibrium effect of
a unit tax on firms 1 and 2 (the treated group) is that their output decreases by 3 and 1 units,
respectively, for an average decrease of 2 units. But due to strong demand complementarities
(spillovers), firm 3 (the untreated group) decreases output by 2.5. Then the population DiD
is −2− (−2.5) = .5 > 0. If this observed population DiD were incorrectly interpreted as the
ATT rather than the MATTS, then one would wrongly reject the hypothesis that a unit tax
reduces firm output, and hence wrongly reject the profit maximizing assumption.

Thus, the prediction that a tax on a single firm will reduce its output is fundamentally
untestable because of spillovers. However, predictions on the sign of MATTS are testable,
and these are the type of comparative static predictions this paper provides. In Section 8
we show that if any subset of firms is taxed, MATTS is negative if the market is perfectly
competitive, or if the market is imperfect and the profit functions satisfy some additional
conditions which constrain spillovers.

In addition to MATTS, we are intrinsically interested in whether a treatment has its
hypothesized effect on the treated, so this paper also provides predictions on the sign of the
impact of treatment on average outcomes among the treated, or the average treatment effect
on the treated with spillovers (ATTS). In some cases we are also able to sign the impact on
the average outcomes among the untreated, or the average spillover effect on the untreated
(ASU), as well as some other comparative statics of interest. Note that MATTS is the
difference between ATTS and ASU.

The setting is any model whose equilibrium is characterized by a system of equations.
We interpret the index of each equation as a unit of observation. The comparative statics
analysis is carried out by way of the implicit function theorem which involves the inverse
of the Jacobian of the system. The Jacobian encodes spillover effects. The (i, j) and (j, i)

off-diagonal terms of the Jacobian capture direct spillover effects between units i and j while
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the off-diagonal terms of its inverse capture equilibrium spillover effects.
In the discussion of the results that follows and unless otherwise specified, the results are

valid for any nontrivial subset of units included in the treatment group, including all n units,
as long as the direct treatment effect is positive. Intuitively, the direct treatment effect is
positive for unit i if unit i’s outcome would increase as a result of treatment if we were to
shut down any spillover effects.

In Theorem 1 we show that ATTS is positive if and only if every diagonally-centered
partial column sum of the Jacobian’s negated inverse is positive, where diagonally-centered
means that the sum includes the term on the main diagonal. Similarly, ASU is positive if and
only if every non-diagonally-centered partial column sum of the Jacobian’s negated inverse
is positive. MATTS is positive if and only if ATTS is at least as large as ASU.

In Theorem 2 we show that MATTS is positive if and only if the negated Jacobian inverse
is a B0-matrix by columns. This is a central insight of the paper. First, it vastly simplifies
the task of checking the predicted sign of MATTS. Second, in Corollary 1, we also show that
the B0-matrix by columns condition implies several additional comparative statics results:
ATTS is positive, the sum of all outcomes increases, and, if only one unit is treated, then this
unit’s outcome increases by more than the magnitude of change in any other unit’s outcome.
Third, this result helps focus the analysis when seeking conditions on direct spillover effects
(i.e., elements of the Jacobian) rather than equilibrium spillover effects (i.e., elements of the
Jacobian inverse), such that the desired results obtain—analytically, we search for conditions
under which a real matrix has an inverse that is a B0-matrix by columns. We discuss these
results next.

In Theorem 3 we assume direct spillovers that are anonymous-by-unit, meaning that for
each unit i, a change in unit j’s outcome has the same spillover impact on unit i’s outcome as
a change in unit k’s outcome. This assumption provides remarkable structure if, in addition,
the negated Jacobian is a B-matrix. Then MATTS and ATTS are strictly positive, the
aggregate outcome increases with treatment, and the outcome of a singularly treated unit
increases by more than the change in outcome of any untreated unit. The sign of ASU is
ambiguous in general but positive (negative) if all off-diagonal terms are positive (negative).
In addition, the B-matrix condition is necessary for MATTS to be strictly positive (Lemma
1 and Corollary 2).

In Theorem 4 we assume direct spillovers are positive, a case which arises in games with
strategic complements. Here, an increase in one unit’s outcome puts upward pressure on
the outcome of all other units. We show that every unit’s outcome increases whenever the
negated Jacobian is an M -matrix, which can be interpreted as a type of stability condition.
Since MATTS is the difference between ATTS and ASU, stronger conditions are required to
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ensure that MATTS is positive. These conditions also imply that a singularly treated unit’s
outcome increases by more than any other unit’s outcome.

In Theorem 5 we assume direct spillovers are negative, a case which arises in games with
strategic substitutes. In this case, an increase in one unit’s outcome puts downward pressure
on the outcome of all other units. Here we rely on a result from Willoughby (1977) under
which the inverse of the negated Jacobian is a strictly diagonally dominant M -matrix. These
conditions restrict the heterogeneity of normalized direct spillovers and imply that MATTS
is strictly positive. Moreover, the outcome of any treated unit increases (and hence ATTS is
strictly positive) while the outcome of any untreated unit weakly decreases (and hence ASU
is negative). Also, a singularly treated unit’s outcome increases by more than the change in
any other unit’s outcome.

Finally, in Theorem 6 we formalize the idea that intuitive comparative statics obtain
when spillovers are small, no matter their sign. By intuitive comparative statics, we mean
that MATTS and ATTS are strictly positive, the sum of outcomes increases, and a singularly
treated unit’s outcome increases by more than any other unit’s outcome changes. Of the
settings considered, this is the only one where the direct spillover effects acting within a unit
can be both positive and negative.2 However, this heterogeneity comes at a cost since the
sufficient condition is stronger than the others.

The paper is organized as follows. In the next section we place our work in the litera-
ture. In Section 3 we show that the observed population DiD identifies MATTS when the
no interference component of SUTVA is dropped. Section 4 presents the model used to
derive comparative statics predictions. Section 5 provides some mathematical preliminaries.
Section 6 gives conditions on the inverse of the Jacobian under which the desired compar-
ative statics results hold, while Section 7 does this for the Jacobian. Section 8 provides an
application of the results. Section 9 concludes.

2 Contributions to the Literature

This paper makes a conceptual and practical contribution on how to deal with spillovers
and SUTVA. The problem with the SUTVA assumption is well-known (e.g., Manski, 1993;
Rubin, 1986; Angrist, Imbens, and Rubin, 1996) but remains standard (Imbens and Rubin,
2015). Similar to Theorem 1 in Vazquez-Bare (2023) who studies randomized controlled
trials, the approach in this project is to drop the no interference component of SUTVA and
focus on what population estimand is identifiable. This approach is distinct from efforts to

2The anonymous-by-unit case allows direct spillovers to positive or negative depending on the unit, but
they must be all positive or negative within a unit.
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identify spillover and direct effects separately. To separately identify spillovers, researchers
have relied on some combination of random assignment to spillovers, knowledge of the social
network, and structural modeling in the sense that a specific model of spillovers is constructed
and its parameters estimated.3 Many of these papers use the linear-in-means framework. In
contrast, the reduced form approach in this paper imposes very little structure for identifica-
tion and allows us to say something meaningful when spillovers are present without having
to separately identify them.

The second literature to which this paper contributes is the analysis of comparative statics
at an equilibrium.4 Due to the complexity of the problem that spillovers introduce, many
papers in this literature examine the effect of a treatment applied to a single individual.
An alternative approach is to restrict the sign of spillover effects to be either all positive or
all negative. In this monotone case, predictions are typically made for the outcome of each
individual. Neither approach is amenable to testing within the reduced form DiD framework
since the treated and untreated groups typically include a large number of individuals for
statistical consistency. This paper breaks new ground by posing and providing answers to
the following testable question: When is the average impact of a treatment, or a shock,
larger among treated units than among untreated units, regardless of the composition of the
two groups?

In answering this new question, we also provide new insight into old questions, even while
assuming differentiability. For example, we show that all the results concerning the impact
of a parameter shock on equilibrium variables provided in Dixit (1986) for oligopoly are
subsumed, and in fact much stronger results obtain under weaker conditions. The key insight
of this paper that drives this and other generalizations is that several desirable comparative
statics results obtain when the negated Jacobian inverse is a B-matrix by columns. Under
various assumptions on spillovers, it turns out that this property of the inverse often obtains
when the negated Jacobian is a type of B-matrix (by rows). This approach is in contrast to
the prevailing one in the literature which relies on diagonal dominance. Finally, a well-cited
and recent contribution to comparative statics analysis under the differentiability assumption
is Acemoglu and Jensen (2013) who study aggregative games. For cases in which our context
and questions context overlap, their conditions are weaker. However, our context does not

3A few examples include Sacerdote (2001), Duflo and Saez (2003), Bramoullé, Djebbari, and Fortin (2009),
Carter, Laajaj, and Yang (2021), Blume, Brock, Durlauf, and Ioannides (2011), Blume, Brock, Durlauf, and
Jayaraman (2015), Goldsmith-Pinkham and Imbens (2013), and Hirano and Hahn (2010).

4This literature is large. Generally speaking it can be classified into approaches which assume differen-
tiability and those that do not. Some examples assuming differentiability include Dixit (1986), Nti (1997),
Acemoglu and Jensen (2013), Christensen and Cornwell (2018), Christensen (2019), and Norris, Johnson,
and Spitkovsky (2023), among others. Examples of lattice-theoretic or monotone methods include Topkis
(2011), Milgrom and Roberts (1990), Amir (2005), and Vives (1990), among others.
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require any aggregative structure to payoffs and we pose different questions.
Finally, the paper contains several new linear algebra results on B-matrices. Let A = (aij)

be an n× n real matrix. Define

r+i = max{0, aij|j ̸= i} and c+j = max{0, aij|i ̸= j}

as the largest nonnegative element in row i (column j). If all elements in the row (column)
are strictly negative, set r+i (c+i ) equal to zero. Then A is a B-matrix if

n∑
j=1

aij > nr+i . (2.1)

for i = 1, ..., n. We say that A is a B-matrix by columns if

n∑
i=1

aij > nc+j . (2.2)

For each row of a B-matrix, the average of the entries is positive and greater than each of
the off-diagonal entries. If inequalities (2.1) and (2.2) are weak, then A is a B0-matrix and
B0-matrix by columns, respectively.

The class of B-matrices was introduced in the mathematical literature in Carnicer, Good-
man, and Peña (1999) and Peña (2001), and was first applied to economics in Christensen
(2019).5 These linear algebra results are woven into the context of the comparative statics
problem, so I highlighlight them here in notation that is friendlier for those interested in this
mathematics.

Let us introduce some notation. Given k, n ∈ N, 1 ≤ k ≤ n, Qk,n will denote the set of
all increasing sequences of natural numbers less than or equal to n. The element αi ∈ Qk,n

contains the natural number i. Its complement α′
i ∈ Qn−k,n, which is the increasingly

rearranged {1, 2, ..., n}\αs, excludes i.

• (Theorem 2) For any k = 1, ..., n− 1,

1

k

∑
j∈αi

aij > (≥)
1

n− k

∑
j∈α′

i

aij for any αi ∈ Qk,n and

1

n

n∑
j=1

aij > (≥)0 for i = 1, ..., n

if and only if A is a B-matrix (B0-matrix).
5See also Hoffman (1965).
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• (Lemma 1 part 2) Suppose aij = βi and αii ̸= βi for any j ̸= i and all i = 1, ..., n. Then
A is a B-matrix if and only if A−1 is a B-matrix by columns.

• A−1 is a B-matrix by columns if any of the following conditions is satisfied:

1. (Theorem 4) For all i = 1, ..., n, aij ≤ 0 for any j ̸= i and

aii > (n− 1)max
j ̸=i

{−aij}.

Note that this condition implies that A is a B-matrix (and an M -matrix).

2. (Theorem 5) Suppose aij > 0 for all i, j and the conditions given in Willoughby
(1977) are satisfied. Willoughby (1977) showed that these conditions imply that
A−1 is a strictly diagonally dominant (by rows and columns) M -matrix.

3. (Theorem 6) For all i = 1, ..., n,

aii > (n− 1)2
∑
j ̸=i

|aij|.

Note that this condition implies that A is a B-matrix.

3 DiD without SUTVA

We begin by reassessing the causal interpretation of the observed population DiD when the
no interference component of SUTVA is dropped. Imbens and Rubin (2015) describe the
no interference component of SUTVA as “the assumption that the treatment applied to one
unit does not affect the outcome for other units.” This is the component of SUTVA which
rules out spillover effects.

Let us expand to allow for spillover effects the potential-outcomes-based presentation of
DiD in Roth et al. (2023). Consider a balanced panel with two time periods, t = 1, 2. Units
are indexed by i = 1, ..., n. Units in the treated group (gi = 1) are treated only in period 2,
whereas units in the untreated group (gi = 0) are never treated.

Potential outcomes depend on the treatment status λit of each unit i in period t. λit is
an indicator equal to 1 if unit i is treated in period t and 0 otherwise. To simplify notation,
write λi = 0 if the unit is not treated in either period (λi1 = λi2 = 0) and λi = 1 if the unit
is treated only in period 2 (λi1 = 0 and λi2 = 1).6 In the observed data, λi = 1 only if unit i
is in the treated group, λi = gi; similarly, λit = 1 only if i is in the treated group and t = 2,

λit = (t− 1)gi. However, we allow for λi ̸= gi and λit ̸= (t− 1)gi to consider counterfactuals.
6It is not necessary to define (λi1, λi2) 7→ λi ∈ R for other combinations of λi1 and λi2.
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The potential outcome of unit i in period t is Yit(λ), where λ = (λ1, ..., λ) is the treatment
status of all units. Let g = (g1, ..., gn) be the group assignment vector. The potential outcome
is also an observed outcome when λ = g, that is,

Y obs
it = Yit(g).

The average treatment effect among the treated,

ATT = E[Yi2(g)− Yi2(0)|gi = 1], (3.1)

is the period 2 difference between the average outcome among the treated under treatment
and the average potential outcome under the counterfactual that no unit is treated. The
main challenge in identifying ATT is that the potential outcome Yi2(0) is not observed by
the empiricist.

Under some assumptions, it is well-known that ATT is identified as

DiD = E[Yi2(g)− Yi1(g)|gi = 1]− E[Yi2(g)− Yi1(g)|gi = 0], (3.2)

since each term on the right hand side of (3.2) is observable. Note that (3.2) is the “difference-
in-differences” of population means, or the population DiD. As exposited in Roth et al. (2023),
the identification assumptions are parallel trends, no anticipatory effects and SUTVA.

The parallel trends assumption asserts that in the absence of treatment, both groups
would have experienced the same outcome evolution, on average. The “no anticipatory
effects” assumption says that period 1 potential outcomes do not depend on treatment status
in period 2. The no interference component of SUTVA means that unit i′s potential outcomes
do not depend on the treatment status of other units.7 In the formal statement of the
assumptions below, λ−i = (λ1, ..., λi−1, λi+1, ..., λn) is the treatment status of all units but i:

(AS1) Parallel Trends. E[Yi2(0)− Yi1(0)|gi = 1] = E[Yi2(0)− Yi1(0)|gi = 0]

(AS2) No anticipatory effects. Yi1(0, λ−i) = Yi1(1, λ−i) for all i and all λ−i.

(AS3) SUTVA (no interference). For all i and t = 1, 2, Yit(λi, λ−i) = Yit(λi, λ
′
−i) for any

λ−i ̸= λ′
−i.

If we drop SUTVA but maintain (AS1)-(AS2), then the causal effect identified by (3.2) is
the marginal average treatment effect among the treated with spillovers, or MATTS:

7The other component of SUTVA, that there are no hidden variations of treatments, is maintained
throughout. See Imbens and Rubin (2015) for more on SUTVA.
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MATTS(g) = E[Yi2(g)− Yi2(0)|gi = 1]︸ ︷︷ ︸
ATTS

− E[Yi2(g)− Yi2(0)|gi = 0]︸ ︷︷ ︸
ASU

(3.3)

MATTS is the difference between the average treatment effect among the treated with
spillovers (ATTS) and the average spillover effect among the untreated (ASU). Note that if
SUTVA is a maintained assumption, then ASU = 0 since Yi2(g) = Yi2(0) for all i such that
gi = 0. In this case, MATTS and ATT are identical.

To see that (3.2) identifies MATTS when the no interference component of SUTVA is
dropped, note that the no anticipatory effects assumption (AS2) allows us to write

E[Yi1(0)|gi = 1] = E[Yi1(g)|gi = 1] and E[Yi1(0)|gi = 0] = E[Yi1(g)|gi = 0].

Make this substitution into the parallel trends assumption (AS1) and re-arrange to get

E[Yi2(0)|gi = 0]− E[Yi2(0)|gi = 1] = E[Yi1(g)|gi = 0]− E[Yi1(g)|gi = 1].

That is, the period 2 unobservable change in average outcomes under no treatment between
those assigned to treatment and those not assigned to treatment equals the initial (i.e.,
period 1) observed difference in average outcomes.

Now re-arrange the right hand side of (3.3), substitute in the last result, and re-arrange
a final time to get

MATTS(g) = (E[Yi2(g)|gi = 1]− E[Y i2(g)|gi = 0]) + (E[Yi2(0)|gi = 0]− E[Yi2(0)|gi = 1])

= (E[Yi2(g)|gi = 1]− E[Yi2(g)|gi = 0]) + (E[Yi1(g)|gi = 0]− E[Yi1(g)|gi = 1])

= E[Yi2(g)− Yi1(g)|gi = 1]− E[Yi2(g)− Yi1(g)|gi = 0].

In other words, we have shown that for a given group assignment g, MATTS is identified as
the population DiD.

In summary, the population DiD identifies MATTS when the no interference component
of SUTVA is dropped. When SUTVA is fully maintained, MATTS simplifies to the ATT. In
either case, the population DiD is easily estimated using its sample analog.

4 The DiD Comparative Statics Problem

In this section we develop analytical restrictions on the sign of the causal estimands identified
in the previous section. Our main objective is to restrict the sign of MATTS. But we are
also intrinsically interested in the sign of ATTS and other comparative statics results. We
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provide these when possible.
With spillovers, (total) causal effects depend on the the size and composition of the

treatment groups. Moreover, in practice the received treatment can differ from the intended
treatment. Thus, we focus on sign predictions that are valid for every possible treatment
group and for any treatment that has a positive direct impact on outcomes. In this way, the
validity of any given statistical test of the sign restriction will not depend on the identity
of the treatment group or whether the treated unit received the treatment in the prescribed
amount.

The following framework is standard except for the way that treatments and treatment
groups are handled.8 There are n continuously differentiable functions f i(y;λ) for i = 1, .., n

where y = (y1, ..., yn) is a vector of endogenous outcome variables and λ = (λ1, ..., λn) is a
vector of exogenous parameters. We assume y ∈ Y ⊂ Rn and λ ∈ Λ ⊂ Rn, where Y and Λ

are open sets.
As an example, each function f i may represent the marginal profit of firm i, yi its output,

and λi the unit tax applied to firm i. The equation f i(y;λ) = 0 would be firm i′s first order
condition for profit maximization.

Given λ = λ̄, an equilibrium ȳ is a solution to the system of equations:

f 1(y; λ̄) = 0

... (4.1)

fn(y; λ̄) = 0.

More compactly, let f = (f 1, ..., fn). Then, in equilibrium, f(ȳ; λ̄) = 0.

To describe the equilibrium effect of a change in the parameters λ among the treated,
we need a way to select which parameters are changing to accommodate different treatment
groups. To simplify, assume ∂f i

∂λj
= 0 for all j ̸= i and f i

λ ≡ ∂f i

∂λi
̸= 0. This means, for example,

that firm i’s output is directly affected by a tax on firm i, but not by a tax on firm j.9 Letting
I denote the n×n identity matrix, put G = Ig as the diagonal matrix whose main diagonal
is the group assignment vector.10 Let Dλf(ȳ; λ̄) be the n× 1 vector with typical element f i

λ.
Then GDλf(ȳ; λ̄) is the n× 1 vector of direct treatment effects.

The Jacobian of f , Dyf(y;λ), is the n × n matrix of partial derivatives, f i
j ≡ ∂f i

∂yj
.

8In the comparative statics literature, “treatments” are often called “shocks.”
9Firm i is indirectly affected by the tax on firm j if ∂fi

∂yj
̸= 0.

10Recall that g = (g1, ..., gn), where gi is an indicator equal to 1 if unit i is in the treated group and 0
otherwise.
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Let Dy(λ̄) denote the vector of equilibrium treatment effects whose ith element is dȳi
dλ

≡∑
j:gj=1

dȳi
dλj

. Then, by the IFT,11

Dy(λ̄) = −[Dyf(ȳ; λ̄)]
−1GDλf(ȳ; λ̄). (4.2)

We are now able to define MATTS, ATTS, and ASU. Let nt and nu be the number
of units in the treated and untreated groups, respectively, in the population. Note that
nt+nu = n. Let δij be the typical element of −[Dyf(ȳ; λ̄)]

−1. Then from (4.2) it follows that
the average treatment effect on the treated with spillovers (ATTS) and the average spillover
effect on the untreated (ASU) are, respectively,

ATTS =
1

nt

∑
r:gr=1

∑
s:gs=0

δrsf
s
λ and

ASU =

 1
nc

∑
r:gr=0

∑
s:gs=1 δrsf

s
λ if nt < n

0 if nt = n.

If nt = n, then the whole population is treated so ASU is undefined, but for technical reasons
we set it equal to zero. Then if nt < n,

MATTS = ATTS − ASU

=
1

nt

∑
r:gr=1

∑
s:gs=0

δrsf
s
λ −

1

nc

∑
r:gr=0

∑
s:gs=1

δrsf
s
λ. (4.3)

And if nt = n, MATTS = ATTS.

Example 1. We illustrate the model for n = 3. By (4.2), the total equilibrium effects of
treatment are 

dȳ1
dλ
dȳ2
dλ
dȳ3
dλ

 =

 δ11f
1
λg1 + δ12f

2
λg2 + δ13f

3
λg3

δ21f
1
λg1 + δ22f

2
λg2 + δ23f

3
λg3

δ31f
1
λg1 + δ32f

2
λg2 + δ33f

3
λg3

 .

Suppose only units 1 and 2 are treated, or g = (1, 1, 0). Then

ATTS =
1

2

{(
δ11f

1
λ + δ12f

2
λ

)
+
(
δ21f

1
λ + δ22f

2
λ

)}
=

1

2

{
(δ11 + δ21) f

1
λ + (δ22 + δ12) f

2
λ

}
,

ASU = δ31f
1
λ + δ32f

2
λ ,

11Assuming det−[Dyf(ȳ; λ̄)]
−1 ̸= 0.
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and
MATTS =

[
1

2
(δ11 + δ21)− δ31

]
f 1
λ +

[
1

2
(δ22 + δ12)− δ32

]
f 2
λ .

Analogous formulas can be written for the other non-zero treatment vectors: (0, 0, 1), (0, 1, 0),
(1, 0, 0), (1, 0, 1), (0, 1, 1), and (1, 1, 1).

5 Mathematical Preliminaries

We say that the real variable x is positive if x ≥ 0 and strictly positive if x > 0. Similarly, x
is negative if x ≤ 0 and strictly negative if x < 0.

Consider the n×n real matrix A = (aij). A is a P -matrix (P0-matrix) if all of its principal
minors are strictly positive (positive). A is a Z-matrix if all of its off-diagonal terms are
negative. A is a M-matrix if it is a nonsingular Z-matrix and it has a positive inverse,
A−1 ≥ 0. The terms B-matrix, B0-matrix, B-matrix by columns, and B0-matrix by columns
were defined in Section 2. A is strictly diagonally dominant (SDD) if, for i = 1, ..., n,

|aii| >
∑
j ̸=i

|aij|.

The diagonal entry of an SDD matrix is larger in magnitude than the sum of the absolute
values of the elements in the same row.

It is well-known that an SDD matrix with a strictly positive diagonal is a P -matrix
with a strictly positive determinant. A B-matrix (B0-matrix) also has a strictly positive
(positive) determinant, and no weaker linear condition exists under which A has this property
(Carnicer, Goodman, and Peña, 1999). A B-matrix (B0-matrix) is also a P -matrix (P0-
matrix) (Peña, 2001). A B-matrix (B0-matrix) has a strictly positive (positive) diagonal,
and, in fact, aii > r+i (aii ≥ r+i ) for all i (Peña, 2001).12

6 Conditions on Equilibrium Spillover Effects

We begin by seeking conditions on the inverse of the negated Jacobian, [−Dyf(ȳ; λ̄)]
−1=(δij),

under which we can sign MATTS and other quantities of interest. The elements of the inverse
(δij) capture equilibrium spillover effects between units i and j.

Our first result can be illustrated in the n = 3 case from Example 1. When g = (1, 1, 0),
ATTS ≥ 0 whenever f 1

λ , f
2
λ > 0 if and only if δ11 + δ21 ≥ 0 and δ21 + δ22 ≥ 0. Note that the

12For a B-matrix, aii > nr+i −
∑

j ̸=i aij ≥ nr+i − (n− 1)r+i = r+i ≥ 0. For a B0-matrix the first inequality
is weak, but otherwise the argument is the same.
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latter two inequalities involve the partial sums of columns 1 and 2 of the negated Jacobian
inverse. Each partial column sum includes its diagonal term, δ11 and δ22. These are examples
of diagonally-centered partial column sums.

Similarly, ASU ≥ 0 whenever f 1
λ , f

2
λ > 0 if and only if δ31 ≥ 0 and δ32 ≥ 0. The latter

terms are the elements that were excluded from the diagonally-centered partial column sums
of columns 1 and 2. These are examples of non-diagonally-centered partial column sums.

Finally, MATTS ≥ 0 whenever f 1
λ , f

2
λ > 0 if and only if the average of the terms included

in the diagonally-centered partial column sum exceeds the average of the terms excluded from
that sum, by column. That is, 1

2
(δ11 + δ21) ≥ δ31 and 1

2
(δ12 + δ22) ≥ δ32.

This illustrates the vital role played by the partial column sums of the inverse Jacobian
in signing MATTS, ATTS, and ASU. Theorem 1 generalizes this argument to allow for any
group assignment. Define Γ = {g = (g1, ..., gn) ∈ Rn|gi ∈ {0, 1} ∀i and gi = 1 for some i}
as the set of all possible non-zero group assignment vectors. We suppress arguments in the
following results, but they are all equilibrium results.

Theorem 1. Suppose Dyf(ȳ; λ̄) is nonsingular.

1. ATTS ≥ 0 for any group assignment vector g ∈ Γ whenever Dλf > 0 iff
∑

r:gr=1 δrs ≥ 0

for all s :gs = 1 and all g ∈ Γ. Moreover ATTS > 0 for any group assignment vector
g ∈ Γ whenever Dλf > 0 iff, for any g ∈ Γ,

∑
r:gr=1 δrs ≥ 0 for all s :gs = 1 and∑

r:gr=1 δrs > 0 for some s :gs = 1.

2. ASU ≥ 0 for any group assignment vector g ∈ Γ whenever Dλf > 0 iff
∑

r:gr=0 δrs ≥ 0

for all s :gs = 1 and all g ∈ Γ. Moreover, if nt < n, then ASU > 0 for any group
assignment vector g ∈ Γ whenever Dλf > 0 iff, for any g ∈ Γ,

∑
r:gr=0 δrs ≥ 0 for all

s :gs = 1 and
∑

r:gr=0 δrs > 0 for some s : gs = 1.

3. MATTS ≥ 0 for any group assignment vector g ∈ Γ whenever Dλf > 0 iff 1
nt

∑
r:gr=1 δrs ≥

1
nu

∑
r:gr=0 δrs for all s :gs = 1 and all g ∈ Γ such that nt < n, and 1

n

∑n
r=1 δrs ≥ 0 for

s = 1, ..., n. Moreover, MATTS > 0 for any group assignment vector g ∈ Γ whenever
Dλf > 0 iff, for any g ∈ Γ, 1

nt

∑
r:gr=1 δrs ≥

1
nu

∑
r:gr=0 δrs for all s :gs = 1 (with strict

inequality for some s : gs = 1) and 1
n

∑n
r=1 δrs ≥ 0 for s = 1, ..., n (with strict inequality

for some s = 1, ..., n).

Remark 1. A more general result holds. In addition to the necessary and sufficient result in
part 1, we can also write

• ATTS ≤ 0 for any group assignment vector g ∈ Γ whenever Dλf > 0 iff
∑

r:gr=1 δrs ≤ 0

for all s :gs = 1 and all g ∈ Γ.

13



• ATTS ≥ 0 for any group assignment vector g ∈ Γ whenever Dλf < 0 iff
∑

r:gr=1 δrs ≥ 0

for all s :gs = 1 and all g ∈ Γ.

• ATTS ≤ 0 for any group assignment vector g ∈ Γ whenever Dλf < 0 iff
∑

r:gr=1 δrs ≥ 0

for all s :gs = 1 and all g ∈ Γ.

The statement concerning ATTS > 0 whenever Dλf > 0 can be similarly generalized. The
same holds for parts 2 and 3 of the theorem.

In words, Theorem 1 says that ATTS (ASU) is positive for any non-trivial group assignment
vector whenever direct treatment effects are strictly positive among the treated if, and only
if, every (non-)diagonally-centered partial column sum of the Jacobian inverse is positive.
Moreover, ATTS (ASU) is strictly positive if and only if every (non-)diagonally-centered
partial column sum of the Jacobian inverse is positive, with at least one sum being strictly
positive for every nontrivial treatment group.

While Theorem 1 provides nice necessary and sufficient conditions such that ATTS and
ASU are positive, it says that MATTS is positive iff the average of any set of column entries
which includes the diagonal term is larger than the average of the remaining column entries.
This is harder to conceptualize, but there is a profitable simplification.

We illustrate the idea in the n = 3 case. Theorem 1 says that MATTS is positive for any
group assignment g ∈ Γ whenever Dλf > 0 if and only if the following 4 inequalities hold
for each i = 1, 2, 3 and j ̸= k ̸= i :

δii ≥
1

2
(δji + δki) (6.1)

1

2
(δii + δji) ≥ δki (6.2)

1

2
(δii + δki) ≥ δji (6.3)

δii + δji + δki ≥ 0. (6.4)

Those four inequalities are equivalent to these three:

δii + δji + δki ≥ 3δji (6.5)

δii + δji + δki ≥ 3δki (6.6)

δii + δji + δki ≥ 0. (6.7)

Inequalities (6.5)-(6.7) are the same as (6.2)-(6.4). To get (6.1), add (6.5) and (6.6), and
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then rearrange:

2(δii + δji + δki) ≥ 3(δji + δki)

δii ≥
1

2
(δji + δki) .

Notice that inequalities (6.5)-(6.7) are equivalent to saying that the inverse of the negated
Jacobian, −[Dλf ]

−1, is a B0-matrix by columns! Our next result says that this result holds
for arbitrary n < ∞.

Theorem 2. Suppose Dyf(ȳ; λ̄) is nonsingular. MATTS ≥ 0 for any group assignment
vector g ∈ Γ whenever Dλf > 0 iff −[Dyf ]

−1 is a B0-matrix by columns. Moreover,
MATTS > 0 for any group assignment vector g ∈ Γ whenever Dλf > 0 if −[Dyf ]

−1 is
a B-matrix by columns.

Remark 2. For both results, the sign of MATTS is reversed if the sign of Dλf is reversed.

To interpret this result, we can think of the elements of the inverse of the negated
Jacobian, δij, as the equilibrium effect of a one unit increase in unit j’s outcome on unit i′s
outcome. If the negated Jacobian is a B0-matrix by columns, this means that the equilibrium
effect of any unit j on unit i′s outcome cannot be larger than the average equilibrium effect
on unit i, where the average equilibrium effect includes the own equilibrium effect δii. This
condition rules out direct spillover effects which accumulate into outlier equilibrium effects.

Theorem 2 is a fascinating result. First it identifies a well-known class of matrices,
B-matrices, which characterize the Jacobian inverse such that MATTS is positive. This
means that to determine the type of direct spillover effects under which MATTS is (strictly)
positive, we can focus attention on the class of matrices whose transposed inverse is a B0-
matrix (B-matrix). This task is taken up in the next section.

In addition, the characterization of MATTS provided in part 3 of Theorem 1 relies on
significantly more inequalities than the characterization in Theorem 2. For a given n, part
3 of Theorem 1 requires us to check

n−1∑
j=0

(
n− 1

j

)

inequalities per column while the B0-matrix property requires only n.13 The remaining in-
13For each column, the inequalities in part (3) of Theorem 1 involve every difference between the diagonally-

centered partial column sum and the sum of the remaining column entries. Thus, the number of inequalities
to check is the same as the number diagonally-centered partial column sums. Each of these sums includes
the diagonal element, to which we add between 0 and n− 1 off-diagonal elements. If j off-diagonal elements
are included, there are n− 1 choose j inequalities.
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equalities in part 3 of Theorem 1 are redundant. To give a sense of the scale of simplification,
note that if n = 15, then part 3 of Theorem 1 involves checking 16,384 inequalities per col-
umn for a total of 245,760 inequalities; Theorem 2 reduces this to 15 per column for a total
of 225. If n = 25, the totals are over 419 million compared to just 625.

Finally, three useful corollaries easily obtain as a consequence of the B0-matrix charac-
terization. First, if MATTS is always positive, then ATTS is also always positive. On first
impression, this is surprising since MATTS is the difference between ATTS and ASU. But
any result that declares MATTS to be positive for any group assignment whenever Dλf > 0

must also be true when ASU is zero. Second, then if there is a single treated unit, then the
impact of treatment on this unit is positive and larger in magnitude than the impact on any
other unit. Finally, treatment increases the total outcome. That is, if Y ≡

∑n
i=1 yi, then

dȲ
dλ

≡
∑n

i=1
dȳi
dλ

≥ 0. To avoid excessive repetition, subsequent theorems refer to these three
results as “the results of Corollary 1.”

Corollary 1. Suppose −Dyf is nonsingular. If −[Dyf ]
−1 is a B-matrix (B0-matrix) by

columns, then

1. ATTS > (≥) 0 for every group assignment vector g ∈ Γ whenever Dλf > 0,

2. dȲ
dλ

> (≥) 0 for every group assignment vector g ∈ Γ whenever Dλf > 0 and

3. if, in addition, unit i is the only treated unit (nt = 1), dȳi
dλ

> (≥)
∣∣∣dȳjdλ

∣∣∣ for all j ̸= i

whenever Dλf > 0.

Proof. We prove the result for B-matrices. The result for B0-matrices is analogous.
(1) By the definition of a B-matrix by columns,

∑
i δij > nc+j for j = 1, ..., n. Let

H = {h ∈ N|1 ≤ h ≤ n and δhj < 0}. If gs = 1, then
∑

r:gr=1 δrs ≤ 0 only if there
are some terms δrs in the sum such that r ∈ H. But by Proposition 2.4 in Peña (2001),
δjj >

∑
h∈H |δhj| .14 It follows that for all g ∈ Γ,

∑
r:gr=1 δrs > 0 for all s :gs = 1. Thus,

ATTS > 0 by Theorem 1.
(2) By equation (4.2), dȲ

dλ
=
∑

i

∑
j δijf

j
λgj =

∑
j (
∑

i δij) f
j
λgj. Note that

∑
i δij > 0 since

−[Dyf ]
−1 is a B-matrix by columns. This proves the result.

(3) If gi = 1 and gj = 0 for all j ̸= i, then by equation (4.2) we have dȳi
dλ

= δiif
i
λ and

dȳj
dλ

= δjif
j
λ for all j ̸= i, so it suffices to prove δii > |δji| for all j ̸= i. But this follows from

Proposition 2.4 in Peña (2001).
14δjj > nc+j −

∑
i ̸=j δij = nc+j −

∑
h̸=j,h ̸=H δhj +

∑
h∈H |δhj | .
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7 Conditions on Direct Spillover Effects

Theorems 1-2 are especially useful if the Jacobian can be inverted in a nice closed form.
However, there are many economic problems where this is not feasible. In this section we
concentrate on conditions on the (noninverted) Jacobian under which MATTS and ATTS
are positive. Put another way, rather than finding conditions on the equilibrium spillover
effects, δij, we now focus on finding conditions on the direct spillover effects, f i

j .
By Theorem 2 and Corollary 1 it is sufficient to find conditions on the negated Jacobian

such that its inverse is a B-matrix by columns. This is a challenging problem in general,
but we are able to make headway in some economically relevant special cases. Similar to
Christensen (2019), the overall theme of the findings is that a trade-off exists between the
heterogeneity and magnitude of spillovers to guarantee intuitive comparative statics results.

7.1 Anonymous-By-Unit Spillovers

A great deal of structure emerges if spillover effects are anonymous-by-unit, meaning that
f i
i = αi and f i

j = βi for all j ̸= i and all i = 1, ..., n. In this case, a unit increase in yj has
the same effect on yi as a unit increase in yk, for any j ̸= k ̸= i. In matrix form,

Dyf(ȳ, λ̄) =


α1 β1 · · · β1

β2 α2 · · · β2

...
... . . . ...

βn βn · · · αn

 .

This case arises when the component functions take the form f i(y;λ) = f i(yi,
∑

j ̸=i yj;λ)

such as in Cournot competition where a firm’s demand, which can be different for each firm,
depends on rivals’ outputs only through their sum.

Dixit (1986) derives closed form comparative statics formulae for this case. To sign
the comparative statics, he assumes that αi < 0 and the matrix −Dyf(ȳ, λ̄) is SDD: for
i = 1, ..., n, | − αi| > (n− 1)| − βi|, or,αi < (n− 1)βi if βi ≤ 0

αi < −(n− 1)βi if βi > 0.

Under these assumptions he derives the following results on equilibrium variables for the
case when only one unit is treated.

Proposition 1 (Dixit, 1986). Suppose spillover effects are anonymous-by-unit, that −Dyf(ȳ, λ̄)
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is SDD, and that only one unit is treated (nt = 1). Then for any vector of direct treatment
effects Dλf > 0,

1. dȳi
dλ

> 0.

2. dȳj
dλ

is negative or positive for j ̸= i as βj is negative or positive.

3. dȲ
dλ

> 0.

Christensen (2019) showed that parts (1) and (3) of Proposition 1 hold under the weaker
assumption that −Dyf(ȳ, λ̄) is a B-matrix, that is, when −αi − (n− 1)βi > nmax{0,−βi}
for i = 1, ..., n, or αi < βi if βi ≤ 0

αi < −(n− 1)βi if βi > 0.

To see that this is a weaker restriction than SDD when spillovers are anonymous-by-unit,
note that −Dyf is a B-matrix if it is SDD. On the other hand, the following is an example
of a B-matrix with a positive diagonal that is not SDD: 3 2.5 2.5

2 3 2

1 1 2

 .

Remarkably, by direct computation we can also sign MATTS, ATTS, and ASU for any
treatment group, not just those with a single treated unit. To this end, let

Γ = 1 +
n∑

i=1

βi/(αi − βi).

Per Dixit (1986) we have

dȳi
dλ

= − gif
i
λ

αi − βi

+
βi

Γ(αi − βi)

n∑
j=1

gjf
j
λ

αj − βj

and (7.1)

dY

dλ
= − 1

Γ

n∑
i=1

gif
i
λ

αi − βi

. (7.2)

If −Dyf is a B-matrix and βi > 0 then

− 1

n
= − βi

nβi

<
βi

αi − βi

< 0. (7.3)
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If βi ≤ 0 then βi/(αi − βi) ≥ 0. From these two facts we have Γ = 1 +
∑n

i=1
βi

αi−βi
> 0. It

follows that dȲ
dλ

> 0 for any group assignment vector g ∈ Γ whenever Dλf > 0.

Turning to average impacts, note that

ATTS =
1

nt

− ∑
j:gj=1

f j
λ

αj − βj

+
∑

k:gk=1

βk/(αk − βk)

Γ

∑
j:gj=1

f j
λ

αj − βj


= − 1

nt

 ∑
j:gj=1

f j
λ

αj − βj

(
1−

∑
k:gk=1

βk/(αk − βk)

Γ

) ,

ASU =
1

nu

∑
k:gk=0

βk/(αk − βk)

Γ

∑
j:gj=1

f j
λ

αj − βj

, and

MATTS = −
∑
j:gj=1

f j
λ

αj − βj

{
1
nt

(
1−

∑
k:gk=1

βk/(αk−βk)
Γ

)
+ 1

nu

∑
k:gk=0

βk/(αk−βk)
Γ

}
.

Since

Γ−
∑

k:gk=1

βk

αk − βk

= 1 +
∑

k:gk=0

βk

αk − βk

> 1− nu

n

≥ 0,

it follows that ATTS> 0. The sign of ASU is ambiguous in general, but it is strictly positive
(strictly negative) if βk ≥ (≤)0 for all k such that gk = 0 with strict inequality for some k

such that gk = 0. To sign MATTS, observe that

Γ−
∑
j:gj=1

βj

αj − βj

+
nt

nu

∑
k:gk=0

βk

αk − βk

= 1 +
∑

k:gk=0

βk

αk − βk

+
nt

nu

∑
k:gk=0

βk

αk − βk

= 1 +
n

nu

∑
k:gk=0

βk

αk − βk

> 1− n

nu

nu

n

= 0.

It follows that MATTS> 0. These findings are summarized in the theorem below.

Theorem 3. Suppose spillovers are anonymous-by-unit and that −Dyf(ȳ, λ̄) is a B-matrix.
Then for any group assignment g and any vector of treatment effects Dλf > 0,
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1. MATTS > 0,

2. the results of Corollary 1 apply, and

3.

ASU > 0 if βk ≥ 0 for all k : gk = 0 and βk > 0 for some k : gk = 0

ASU < 0 if βk ≤ 0 for all k : gk = 0 and βk > 0 for some k : gk = 0.

Is there any weaker condition which guarantees that MATTS is strictly positive when
spillovers are anonymous-by-unit? No, not if αi ̸= βi. In this case −Dyf is a B-matrix if it
is a B0-matrix, and −Dyf is a B-matrix if and only if [−Dyf ]

−1 is a B-matrix by columns.
In view of Theorem 2, this means that the B-matrix condition is necessary and sufficient for
MATTS to be positive.

Lemma 1. Suppose for all i = 1, ..., n, f i
i = αi ̸= 0 and f i

j = βi ̸= αi for all j ̸= i. Then
−Dyf(ȳ; λ̄) is a B-matrix (by rows) if and only if −[Dyf(ȳ; λ̄)]

−1 a B-matrix by columns.

Sufficiency follows from Theorem 2 since we have shown that MATTS>0 when −Dyf is
a B-matrix. We prove necessity and provide an alternate sufficiency proof in the Appendix.
We apply Lemma 1 as follows:

Corollary 2. If spillover effects are anonymous-by-unit and αi ̸= βi ∀i, then MATTS> 0

for any group assignment g whenever Dλf > 0 if and only if −Dλf(ȳ, λ̄) is a B-matrix.

Proof. This follows from Lemma 1 and Theorem 2.

7.2 Positive Spillovers

Assume spillovers are positive, or f i
j ≥ 0 for all i ̸= j. As illustrated in the next section,

this case arises, for example, in games with strategic complements. If −Dyf has a strictly
positive diagonal then it is a Z-matrix by definition. If it is also an M -matrix it has a positive
inverse, and thus the outcome of every unit weakly increases; hence, ATTS and ASU are
positive. In fact, we can also show that this is a necessary condition. The sign of MATTS
is ambiguous in general, but the following result gives conditions under which MATTS is
strictly positive.

Theorem 4. Suppose for i = 1, ..., n, f i
j ≥ 0 for all i ̸= j and f i

i < 0.

1. For all i = 1, ..., n, dȳi
dλ

≥ 0 for any group assignment vector g ∈ Γ whenever Dλf ≥ 0

if and only if −Dyf(ȳ; λ̄) is an M -matrix. It follows that ATTS ≥ 0 and ASU ≥ 0.
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2. Suppose −f i
i > (n−1)maxj ̸=i{f i

j} for all i = 1, ..., n. Then MATTS > 0 and ASU ≥ 0

for any group assignment vector g ∈ Γ whenever Dλf > 0. Moreover, the results of
Corollary 1 apply.

The condition in part 2 of Theorem 4 implies that −Dyf(ȳ; λ̄) is an M -matrix. To see this,
note that

|f i
i | = −f i

i > (n− 1)max
j ̸=i

{f i
j} ≥

∑
j ̸=i

|f i
j |

implies −Dyf(ȳ; λ̄) is SDD with a positive diagonal, and is thus a P -matrix. It follows that
−Dyf(ȳ; λ̄) is also an M -matrix since a nonsingular Z-matrix that is also a P -matrix is an
M -matrix (Plemmons, 1977).

Intuitively, when spillovers are positive, an increase in any unit’s outcome (weakly) in-
creases the outcomes of all other units. Thus, a treatment that increases the outcome of
any unit(s) should increase the outcome of all units, provided that the equilibrium system is
well-behaved. Consequently, we expect ATTS and ASU to be positive. The system is well-
behaved if its Jacobian is an M -matrix, which can be thought of as a stability requirement
(Plemmons, 1977; Christensen and Cornwell, 2018).

7.3 Strictly Negative Spillovers

We can also obtain strong results if spillovers are strictly negative, meaning f i
j < 0 for all

i, j. For then the negated Jacobian −Dyf is a strictly positive matrix. If its inverse is an
M -matrix, the terms on the main diagonal are strictly positive and the off-diagonal terms are
positive. From the latter it follows that ASU is negative. In fact, dȳj

dλ
≤ 0 for any untreated

unit. If, in addition, the inverse is SDD by columns, it follows that ATTS and MATTS are
strictly positive, as claimed in Theorem 5 below. In fact, dȳj

dλ
≥ 0 for any treated unit. The

result relies largely on Willoughby (1977) which provides tight sufficient conditions under
which the inverse of a positive matrix is an M -matrix.

Lemma 2 (Willoughby, 1977). Suppose −f i
j > 0 for all i, j = 1, ..., n. Assume 0 < y ≤ x < 1

and for i ̸= j, 0 < y ≤ f i
j/f i

i ≤ x < 1. Let the interpolation parameter, s, be defined by

x2 = sy + (1− s)y2.

Further suppose that any of the following conditions is satisfied:

1. n = 2,

2. x = y, or
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3. n ≥ 3 and s ≤ 1
n−2

.

Then [−Dyf ]
−1 exists and is a SDD (by rows and columns) M-matrix.

Theorem 5. Suppose the conditions of Lemma 2 are satisfied. Then for any group assign-
ment g ∈ Γ and Dλf > 0, MATTS > 0, ASU ≤ 0, dȳj

dλ
≤ 0 for any j such that gj = 0, and

dȳj
dλ

> 0 for any j such that gj = 1. Moreover, the results of Corollary 1 apply.

Intuitively, when spillovers are strictly negative, the direct spillover effect of an increase
in a single unit’s outcome decreases the outcomes of all other units. Thus, if a single unit
receives a treatment with a strictly positive direct treatment effect, downward pressure is
exerted on the outcomes of all other units. Consequently, we expect the treated unit’s
outcome to increase while untreated units’ outcomes decrease. This in turn implies that
MATTS is strictly positive. For a well-behaved system—as defined by the conditions in
Lemma 2—this intuition extends to any treatment group. Note that these conditions are
global in the sense that they constrain the heterogeneity of direct spillover effects of all
units jointly. In contrast, Theorems 3 and 4 constrain the heterogeneity of direct spillover
effects acting on a single unit. Put differently, Lemma 2 is a joint condition on all the off-
diagonal terms of the negated Jacobian, whereas the other results are conditions which apply
independently to each row of the matrix.

We finish this subsection with the technical observation that a Z-matrix with a strictly
positive diagonal is a B-matrix by columns if, and only if, it is SDD by columns. This fact
further clarifies the relationship between B-matrices and SDD matrices, as well as the the
relationship between Theorem 5, Lemma 2, and Theorem 2.

Fact 1. Let A = (aij) be an n× n real matrix with a strictly positive diagonal and negative
off-diagonal terms: for i = 1, ..., n, aii > 0 and aij ≤ 0 for all j ̸= i. Then A is SDD by
columns if and only if it is a B-matrix by columns.

Proof. In this case c+j = 0 for all j, so A is a B-matrix by columns if
∑n

i=1 aij > 0, or
ajj > −

∑
i ̸=j aij. This is equivalent to |ajj| >

∑
i ̸=j |aij| .

7.4 Small Spillover Effects

In this section we formalize the intuition that small spillovers should not be able to overcome
the direct effect of treatment. To this end, Theorem 6 below provides a sufficient condition
under which MATTS is strictly positive, which in turn implies that the results of Corollary
1 apply. Viewed through a linear algebra lens, Theorem 6 identifies a matrix whose inverse
is a B-matrix by columns. The proof relies on the following Lemma.
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Lemma 3. Suppose A is an n× n real matrix and, for i = 1, ..., n,

aii > (n− 1)
∑
j ̸=i

|aij| .

Then A is a SDD (by rows) B-matrix.

Theorem 6. Suppose for i = 1, ..., n,

−f i
i > (n− 1)2

∑
j ̸=i

∣∣−f i
j

∣∣ . (7.4)

Then MATTS > 0 for any group assignment vector g ∈ Γ whenever Dλf > 0. Moreover,
the results of Corollary 1 apply.

8 Application: Taxes and Output

In this section we return to question of whether the profit maximization hypothesis can
be tested via the comparative statics of taxation. We provide a simple but generalizable
model supporting the summary discussion in the introduction which argued that this is not
possible in general because of the sign reversal property of the population DiD. Then we
apply Theorems 3-6 to identify assumptions on the competitive environment under which
MATTS is strictly negative when any subset of firms is taxed, a testable prediction within
the DiD framework. Environments in which MATTS is strictly negative after a tax include
homogeneous Cournot competition and perfect competition, among others.

8.1 Imperfect Competition

Consider an imperfectly competitive population of n firms where each firm i selects output
yi ≥ 0 to maximize profit πi. Firm i’s cost ci(yi) − γiλiyi depends on its output and a unit
tax λi. Assume that production cost ci(yi) is convex, c′′i (yi) ≥ 0 for all yi ≥ 0 and all i. The
subscript on λi allows the tax to be firm-specific. The parameter γi > 0 allows for the actual
tax treatment to differ in magnitude, but not the sign, from the intended treatment. Inverse
demand for each firm is linear, pi(y) = ai −

∑n
j ̸=ij=1 bijyj −

1
2
biiyi with bii > 0 for all i.

We assume a unique interior equilibrium exists. The first order condition for each firm
i = 1, ..., n is

∂πi

∂yi
= ai −

n∑
j=1

bijyj − c′i(yi)− γiλi = 0.
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Equilibrium ȳ = (ȳ1, ..., ȳn) is a solution to this system of n equations. Define f i ≡ ∂πi

∂yi
to

match the notation from Section 4. The negated Jacobian of the system is

−Dyf(ȳ; λ̄) =


b11 + c′′1(ȳ1) b12 · · · b1n

b21 b22 +c′′2(ȳ2) · · · b2n
...

... . . . ...
bn1 bn2 · · · bnn + c′′n(ȳn)

 .

Notice that the terms of the negated Jacobian can be interpreted as the slope coefficients of
firm demand, or as the change in marginal profit since ∂2πi

∂yi∂yj
= −bij. The latter interpretation

generalizes so we use it. The vector of direct treatment effects is

Dλf(ȳ; λ̄) =


−γ1

...
−γn

 < 0.

8.1.1 Illustration of the Sign Reversal Property

We first present an example to illustrate the sign reversal property of the population DiD
when interpreted as the ATT. Let n = 3. Set ci(yi) ≡ 0 and γi = 1 for i = 1, 2, 3. Suppose

p1(y) = a− 1

6
y1,

p2(y) = a− 1

2
y2, and

p3(y) = a+
5

4
y1 +

5

4
y2 − y3.

Firm 3’s demand is complementary with firm 1 and 2’s output, but firm 1 and firm 2’s
demand is independent of the others. These stark assumptions are designed to illustrate the
mechanics of the sign reversal property.

Equilibrium is the solution to the system of first order conditions:

π1
1(y; γ1, λ1) = a− 1

3
y1 − λ1 = 0,

π2
1(y; γ2, λ2) = a− y2 − λ2 = 0, and (8.1)

π3
1(y; γ3, λ3) = a+

5

4
y1 +

5

4
y2 − 2y3 − λ3 = 0.
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The equilibrium quantities are

ȳ1 = 3a− 3λ1, ȳ2 = a− λ2, andȳ3 = 3a− 15

8
λ1 −

5

8
λ2 −

1

2
λ3.

If firms 1 and 2 are treated while firm 3 is untreated, then

dȳ1
dλ

= −3,
dȳ2
dλ

= −1, and
dȳ3
dλ

=−5

2
.

Each firm reduces output in equilibrium, yet

MATTS =
−3− 1

2
−
(
−5

2

)
=

1

2
> 0.

In practice, a researcher estimates the population DiD which in turn identifies MATTS. But
if one were to interpret the population DiD as the ATT, then one would erroneously reject
the hypothesis that the tax decreases output among the taxed, on average.

One may take issue in this example with the fact that in firm 3’s demand function, the
slope coefficients on firm 1 and 2’s output (−5/4) is larger in magnitude than the slope
coefficient on firm 3’s output (1). There are two responses to this concern. First, this type
of situation is ruled out in order to guarantee that MATTS is strictly negative. Second, we
can extend this example to n firms where firms 1 to n − 1 experience no spillover effects
(bij = 0 for i = 1, ..., n − 1 and j ̸= i) and firm n experiences anonymous spillover effects
(bnj = βn < 0 for all j ̸= n). Then, by Corollary 2, MATTS is strictly negative if and only
if bnn < −(n− 1)β = (n− 1)|β|. Thus, whenever n > 3 we can have |β| < bnn and MATTS
strictly positive.

8.1.2 Anonymous-by-unit Spillovers

Suppose spillovers are anonymous-by-unit so bij = βi for all j ̸= i and all i = 1, ..., n. It
follows from Corollary 2 that MATTS is strictly negative when the unit tax increases for
any nontrivial subset of firms if, and only if,

bii + c′′i (ȳi) > βi when βi > 0, and
bii + c′′i (ȳi) > −(n− 1)βi when βi ≤ 0.

By Theorem 3 and Proposition 1, these conditions also imply that ATTS is strictly
negative, total output decreases, and if only one firm is taxed, then the taxed firm decreases
its output by more than the output of any other firms changes while the the output of the
untaxed firms decreases.
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To understand the intuition behind the conditions, first suppose that βi > 0 for all i.
Then firm i′s output is a strategic substitute with rivals’ output since ∂πi

∂yi∂yj
= −βi < 0. Since

the direct treatment effect of a tax on any firm is strictly negative, the direct spillover effect
on a firm of any taxed rival is an increase in own output. But as long as marginal profit is
affected most by changes in own output, equilibrium spillover effects will not overpower the
direct treatment and direct spillover effects, so in equilibrium a tax decreases the average
output of treated firms and increases the average output of untreated firms.

If βi < 0 for all i, then firm i’s output is a strategic complement with rivals’ output. Since
the direct treatment effect of a tax on any firm is strictly negative, the direct spillover effect
of any taxed rival is a decrease in own output. In this case we need a stronger restriction
to ensure MATTS is strictly negative: marginal profit is affected by a change in own output
more than n− 1 times as much as a change in any rival’s output.

Interestingly, the restrictions on marginal profit are by firm—they are not global condi-
tions. So it is possible to have βi < 0 for some i and βi > 0 for other i while maintaining
MATTS< 0 under the same conditions. This suggests that the right way to think about
spillovers in this context is how a firm’s output decision is affected by, rather than affects,
the output of rivals.

Finally, note that the homogeneous goods Cournot oligopoly arises when βi = β > 0 and
bii = 2β. But our framework accommodates a more general model as it allows each firm to
face a different price and allows direct spillovers to vary in intensity and sign by firm.

8.1.3 Strategic Complements

If bij ≤ 0 for all j ̸= i and i = 1, ..., n, then outputs are complements in demand and are
strategic complements. By Theorem 4, MATTS is strictly negative and ASU is positive
whenever the unit tax on any nontrivial subset of firms is increased if, for i = 1, ..., n,

bii + c′′i (ȳi) > (n− 1)max
j ̸=i

{−bij}. (8.2)

Interpreted as marginal profit, this condition says that an increase in own output has at
least n− 1 times the impact in magnitude on marginal profit as a unit increase in any rival’s
output. Then ATTS is strictly negative, total output decreases, and, if only one firm is
taxed, then the taxed firm decreases its output by more than the change in output of any
rival.
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8.1.4 Strategic Substitutes

If bij > 0 for all j ̸= i and i = 1, ..., n, then outputs are substitutes in demand and are
strategic substitutes. By Theorem 5, if n = 2 or if bij

bii+c′′i (ȳi)
= β < 1 for all i and j ̸= i, then

MATTS and ATTS are strictly negative while ASU is positive whenever the tax is increased
on any nontrivial subset of firms. Note that the latter is a special case of spillovers that are
anonymous-by-unit.

If n ≥ 3, to reach these conclusions in general we require the normalized slope coefficients
are not too heterogeneous. Specifically, if 0 < y ≤ bij/(bii+ci(ȳi)) ≤ x < 1, we need s ≤ 1

n−2

where s satisfies x2 = sy + (1− s)y2.

8.1.5 Small Spillovers

Finally, by Theorem 6, in general we can say that MATTS and ATTS are strictly negative,
total output decreases, and the output of a single treated firm (nt = 1) decreases by more
that the output of any other firm for any group assignment vector g ∈ Γ as long as, for
i = 1, ..., n,

bii + c′′i (ȳi) > (n− 1)2
∑
j ̸=i

|bij| . (8.3)

This is the only case considered in which different rivals can have differently signed direct
spillover effects on a firm’s marginal profit. But this sign heterogeneity comes at a cost.
Condition (8.3) is a much stronger than condition (8.2), for example.

8.1.6 Generalization

While this analysis assumed linear demand and convex costs, it generalizes easily. Specifi-
cally, the negated Jacobian is the matrix of cross-partials − ∂2πi

∂yi∂yj
. The results obtain if in

each of the conditions we replace bij with − ∂2πi

∂yi∂yj
for the off-diagonal terms (i ̸= j) and

replace the diagonal terms, bii + c′′i (ȳi), with −∂2πi

∂y2i
.

8.2 Perfect Competition

We now consider the case where firms are price-takers and produce a homogeneous good.
Firms select output to maximize profit taking price as given,

max
yi

pyi − ci(yi)− γiλiyi.
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Assume ci(yi) is strictly increasing, strictly convex, and that c′′i (0) = 0. The profit-maximizing
quantities satisfy

p− c′i(yi)− γiλi = 0 for i = 1, ..., n.

Let inverse market demand be p = D(
∑n

i=1 yi) for D : R → R a strictly decreasing and
differentiable function. Substitute this in to write

D(Y )− c′i(yi)− γiλi = 0 for i = 1, ..., n.

Equilibrium outputs are a solution to this system. Its negated Jacobian is
−D′(Ȳ ) + c′′1(ȳ1) −D′(Ȳ ) · · · −D′(Ȳ )

−D′(Ȳ ) −D′(Ȳ ) + c′′2(ȳ2) · · · −D′(Ȳ )
...

... . . . ...
−D′(Ȳ ) −D′(Ȳ ) · · · −D′(Ȳ ) + c′′n(ȳn)

 .

Spillovers are anonymous-by-unit and the negated Jacobian is a B-matrix since c′′i (ȳi) > 0

and D′(Ȳ ) < 0. By Theorem 5, any increase in the tax on any nontrivial subset of firms
implies that MATTS is strictly negative and total output decreases. A consequence of the last
result is that market price increases with the tax. Moreover, the output of every treated firm
(i.e., those whose tax increases) decreases and the output of every untreated firm increases.
In this way, perfect competition is the ideal setting in which to test the profit maximization
hypothesis via the comparative statics of taxation.

9 Conclusion

This main goal of this paper is to expand the empirical testability of theories within the
DiD framework. This is important because economics as a discipline has generated a wealth
of models and insights to explain human and market behavior. Researchers need simple
methods to select the appropriate model to apply to their research question. We hope that
this paper has provided a step in that direction.

We accomplished this task in two steps, each of which is of independent interest. First,
we showed that within the canonical DiD framework, the population DiD identifies MATTS
when spillovers, or interference, are present. MATTS reduces to ATT when SUTVA is main-
tained. This means that canonical DiD research designs that would normally be unacceptable
exclusively because of spillovers can be used if the estimate is interpreted as MATTS.

It is important to get this interpretation right so that treatment effects can be appropri-
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ately assessed. We have illustrated that the classic DiD estimator exhibits a sign reversal
property if interpreted as a causal estimate of ATT rather than MATTS—a researcher may
conclude that a treatment has an adverse impact when then true impact is positive.

Second, within the context of a widely applicable metamodel with spillovers we derived
novel conditions under which we can predict the sign of MATTS. These predictions are valid
for any treatment group, so a statistically significant DiD estimate whose sign disagrees with
the predicted sign constitutes a rejection of the theory.15 Thus, a clear, straight line has
been drawn in this paper between theoretical predictions and their reduced form empirical
test using conventional comparative statics analysis.

In addition to its connection to empirical hypothesis testing, we have shown throughout
that the comparative statics analysis yields new insights to old questions while also posing
and answering new questions. These insights were facilitated by the observation that B-
matrices play an important role in signing comparative statics. Developing this connection
required us to derive a few new results for the class of B-matrices, especially with respect to
conditions on the elements of a matrix under which its inverse is a B-matrix by columns.

15We avoid the term refutation and opt instead for rejection since a type I error cannot be ruled out.
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A Appendix

Proof of Theorem 1

Proof. (1) For a given g ∈ Γ,

ATTS =
1

nt

∑
r:gr=1

(∑
s:gs=1

δrsf
s
λ

)
=

1

nt

∑
s:gs=1

( ∑
r:gr=1

δrs

)
f s
λ ≥ 0

whenever f s
λ > 0 for all s : gs = 1 iff

∑
r:gr=1 δrs ≥ 0 for all s : gs = 1. Since the result is for

any g ∈ Γ, it follows that ATTS ≥ 0 whenever Dλf > 0 iff
∑

r:gr=1 δrs ≥ 0 for all s :gs = 1

and all g ∈ Γ.

In addition, it is easy to see that, for a given g ∈ Γ, ATTS > 0 whenever f s
λ > 0 for all

s : gs = 1 iff
∑

r:gr=1 δrs ≥ 0 for all s : gs = 1 with strict inequality for at least one s : gs = 1.

The result follows since this must be true for any g ∈ Γ.

(2) Similarly, for a given g ∈ Γ such that nt < n,

ASU =
1

nu

∑
r:gr=0

(∑
s:gs=1

δrsf
s
λ

)
=

1

nu

∑
s:gs=1

( ∑
r:gr=0

δrs

)
f s
λ ≥ 0

whenever f s
λ > 0 for all s : gs = 1 iff

∑
r:gr=0 δrs > 0 for all s : gs = 1. If nt = n, then ASU = 0

by assumption. Since the result is for any g ∈ Γ, it follows that ASU ≥ 0 whenever Dλf > 0

iff
∑

r:gr=0 δrs ≥ 0 for all s : gs = 1 and all g ∈ Γ.

If nt < n, then ASU > 0 whenever f s
λ > 0 for all s : gs = 1 iff

∑
r:gr=0 δrs > 0 for all

s : gs = 1,with strict inequality for at least one s : gs = 0. The result follows since this must
be true for any g ∈ Γ.

(3) Finally, for a given g ∈ Γ such that nt < n,

MATTS =
1

nt

∑
s:gs=1

( ∑
r:gr=1

δrs

)
f s
λ −

1

nu

∑
s:gs=1

( ∑
r:gr=0

δrs

)
f s
λ

=
∑
s:gs=1

(
1

nt

∑
r:gr=1

δrs −
1

nu

∑
r:gr=0

δrs

)
f s
λ

≥ 0

whenever f s
λ > 0 for s : gs = 1 iff 1

nt

∑
r:gr=1 δrs ≥

1
nu

∑
r:gr=0 δrs for all s : gs = 1. If nt = n

so that g = (1, 1, ..., 1),

MATTS =
1

n

n∑
s=1

(
n∑

r=1

δrs

)
f s
λ ≥ 0
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if and only if
∑n

r=1 δrs ≥ 0 for s = 1, ..., n.

Since the result is for any g ∈ Γ, it follows that MATTS ≥ 0 whenever Dλf > 0 iff∑
r:gr=1 δrs ≥ 0 for all s = 1, ..., n. A similar argument proves the result which characterizes

MATTS > 0.

Proof of Theorem 2

Proof. To prove this result, we will show that

1

nt

∑
r:gr=1

δrs ≥
1

nu

∑
r:gr=0

δrs for all s : gs = 1, any g ∈ Γ with 1 ≤nt < n; and (A.1)

1

n

n∑
r=1

δrs ≥ 0 for s = 1, ..., n (A.2)

is equivalent to the definition of a B0-matrix by columns:

1

n

n∑
r=1

δrs ≥ c+s for s = 1, ..., n. (A.3)

The result for B-matrices is obtained by using strict rather than weak inequalities in the
“⇐” direction.

(⇒) Fix g ∈ Γ. If nt = n− 1, then (A.1) implies, for each s = 1, ..., n,

1

n− 1

∑
r:gr=1

δrs ≥ δks for k : gk = 0.

Since this must be true for any group assignment g ∈ Γ, then for each s = 1, ..., n,

1

n− 1

n∑
r ̸=k,r=1

δrs ≥ δks for k ̸= s, k = 1, ..., n

n∑
r ̸=k,r=1

δrs ≥ (n− 1)δks for k ̸= s, k = 1, ..., n

n∑
r=1

δrs ≥ nδks for k ̸= s, k = 1, ..., n.

Combining these n− 1 inequalities with (A.2) results in (A.3).
(⇐) Now assume that (A.3) holds. Then (A.2) is directly implied.
To show that (A.1) is also implied, let 1 ≤ nt < n, fix g ∈ Γ, and note that by (A.3) we
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have, for s = 1, ..., n,

n∑
r=1

δrs ≥ nδks for k ̸= s, k = 1, ..., n∑
r:gr=1

δrs ≥ nδks −
∑

r:gr=0

δrs for k ̸= s, k = 1, ..., n.

Now fix a column s where s : gs = 1 and sum over the nu > 0 inequalities with k such that
gk = 0 :

nu

∑
r:gr=1

δrs ≥ n
∑

k:gk=0

δks − nu

∑
r:gr=0

δrs

nu

∑
r:gr=1

δrs ≥ nt

∑
r:gr=0

δrs

1

nt

∑
r:gr=1

δrs ≥
1

nu

∑
r:gr=0

δrs.

Since this inequality holds for any s : gs = 1 and any group assignment vector g ∈ Γ, it must
hold for s = 1, ..., n, as desired.

Proof of Lemma 1

Proof. We establish a few facts to facilitate the proof. From −Dyf [−Dyf ]
−1 = I it follows

that, for i ̸= j and j = 1, ..., n,
∑n

m=1 −f i
mδmj = −αiδij −βi

∑
m ̸=i δmj = 0. The last equality

implies

δij = −βi

αi

∑
m̸=i

δmj. (A.4)

Next, let ej be a column vector with 1 in the jth position and zeros elsewhere, while ⊮
is a column vector of ones. Put g = ej, Dλf(ȳ; λ̄) = ⊮ and recall that G = Ig, so by the
implicit function theorem,

D(ȳ) = −[Dyf(ȳ; λ̄)]
−1GDλf(ȳ; λ̄) = ej.

This says that D(y) equals the jth column of −[Dyf(ȳ; λ̄)]
−1. Since the ith element of D(y)

is dyi
dλj

= δij, it follows from (7.2) that, for j = 1, ..., n,

n∑
m=1

δmj = − 1

Γ

1

αj − βj

. (A.5)
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Next, for i ̸= j and j = 1, ..., n, we have from (A.4) that

∑
m ̸=i

δmj =
n∑

m=1

δmj − δij =
n∑

m=1

δmj +
βi

αi

∑
m ̸=i

δmj.

This implies for i ̸= j and j = 1, ..., n that

∑
m̸=i

δmj =
αi

αi − βi

n∑
m=1

δmj, (A.6)

Finally, note that ∑
m

δmj > nδij

⇔
∑
m ̸=i

δmj > (n− 1)δij

⇔
∑
m ̸=i

δmj > −(n− 1)
βi

αi

∑
m̸=i

δmj, (A.7)

where the last inequality follows from (A.4).
(⇒) Suppose −Dλf is a B-matrix. Then αi < 0. Also, as was shown in the main text,

n∑
m=1

δmj = − 1

Γ

1

αj − βj

> 0.

Moreover, for i ̸= j and j = 1, ..., n,

∑
m̸=i

δmj =
αi

αi − βi

n∑
m=1

δmj > 0 (A.8)

since αi/(αi−βi) > 0 from the fact that A is a B-matrix. Then inequality (A.7) is equivalent
to

αi < −(n− 1)βi,

which is implied since A is a B-matrix. Thus, [−Dλf ]
−1 is a B-matrix by columns.

(⇐) Now suppose [−Dyf ]
−1 is a B-matrix by columns. We wish to show thatαi < βi if βi ≤ 0

αi < −(n− 1)βi if βi > 0.

33



To this end, note that

n∑
m=1

δmj = − 1

Γ

1

αj − βj

> 0 for j = 1, ..., n

implies sgn
(
− 1

Γ

)
=sgn

(
1

αj−βj

)
for j = 1, ..., n. It follows that either αj − βj > 0 ∀j or

αj − βj < 0 ∀j.
Suppose αj − βj < 0 ∀j. Since [−Dyf ]

−1 is a B-matrix, for j = 1, ..., n,

n∑
m=1

δmj > nδij for all i ̸= j.

By subtracting δij from both sides, substituting expression (A.4) for δij, and substituting
expression (A.8) for

∑
m ̸=i δmj, this is equivalent to∑

m ̸=i

δmj > (n− 1)δij for all i ̸= j

∑
m ̸=i

δmj > −(n− 1)
βi

αi

∑
m̸=i

δmj

αi

αi − βi

n∑
m=1

δmj > −(n− 1)
βi

αi − βi

n∑
m=1

δmj.

Divide both sides by
∑n

m=1 δmj/(αi − βi) to get

αi < −(n− 1)βi.

Hence, −Dyf is a B-matrix.
Now suppose αj−βj > 0 ∀j. The diagonal terms of the inverse of a B-matrix are positive

(Christensen, 2019), so we must have αj < 0 since αj ̸= 0 by assumption. It follows that
βj < 0 and (A.8) implies

∑
m ̸=i δmj < 0. Thus, (A.7) is equivalent to

αi > −(n− 1)βi > 0

which contradicts the the fact that αi < 0. Thus, we must have αj − βj < 0 ∀j.

Proof of Theorem 4

Proof. (1) By equation (4.2), −Dyf(ȳ; λ̄)D(ȳ) = GDλf(ȳ; λ̄). Since −Dyf(ȳ; λ̄) is a Z-
matrix and GDλf ≥ 0, it follows that D(ȳ) ≥ 0 if and only if −Dyf(ȳ; λ̄) is an M -matrix
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(Plemmons, 1977). It follows immediately that ATTS and ASU are positive.
(2) By Theorem 2 and Corollary 1 we need to show that the inverse of −Dyf(ȳ; λ̄)

is a B-matrix by columns, or
∑

j δij > nc+j for all j = 1, ..., n. To this end, notice that
−Dyf(ȳ; λ̄)[−Dyf(ȳ; λ̄)]

−1 = I implies that for any j = 1, ..., n and any i ̸= j,

−f i
i δij =

∑
m ̸=j

f j
mδmj

−f i
i δij ≤ max

m̸=j
{f j

m}
∑
m̸=j

δmj

δij ≤
1

−f i
i

max
m ̸=j

{f j
m}
∑
m ̸=j

δmj

(n− 1)δij ≤
n− 1

−f i
i

max
m̸=j

{f j
m}
∑
m̸=j

δmj.

Since −f i
i > (n− 1)maxj ̸=i{f i

j} we have

n− 1

−f i
i

max
m ̸=j

{f j
m} < 1.

Hence, since −Dyf(ȳ; λ̄) is an M -matrix,

0 ≤ (n− 1)δij <
∑
m̸=j

δmj

0 ≤ nδij <
n∑

m=1

δmj,

as desired.

Proof of Lemma 2

Proof. Let H be the diagonal matrix with elements −1/f i
i on the main diagonal. Then

−HDyf(ȳ; λ̄) is a strictly positive matrix with a unit diagonal. It follows from Willoughby
(1977) that −[HDyf(ȳ; λ̄)]

−1 = −Dyf(ȳ; λ̄)
−1H−1 is a SDD (by rows and columns) M -

matrix.
H−1 is a diagonal matrix with diagonal elements −f i

i > 0, so −Dyf(ȳ; λ̄)
−1 has the

same sign pattern as −Dyf(ȳ; λ̄)
−1H−1. Moreover, the inverse of −Dyf(ȳ; λ̄) is positive so

−Dyf(ȳ; λ̄) must be an M -matrix.
Recall that δij is the typical element of [−Dyf(ȳ; λ̄)]

−1. Since −Dyf(ȳ; λ̄)
−1H−1 is SDD
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by columns, we have for j = 1, ..., n,

|δjj|
(
−f j

j

)
=
∣∣δjjf j

j

∣∣ >∑
i ̸=j

∣∣δijf j
j

∣∣ = (−f j
j

)∑
i ̸=j

|δij| .

Hence, |δjj| >
∑n

i ̸=j,i |δij| , which proves that [−Dyf(ȳ; λ̄)]
−1 is SDD by columns. A similar

argument shows that [−Dyf(ȳ; λ̄)]
−1 is SDD by rows.

Proof of Theorem 5

Proof. Lemma 2 implies [−Dyf ]
−1 is SDD by columns. By Fact 1 this implies [−Dyf ]

−1 is
a B-matrix by columns. Then by Theorem 2, MATTS> 0 for any group assignment vector
g ∈ Γ whenever Dλf > 0. The results of Corollary 1 therefore apply. Finally, the fact that
−Dyf(ȳ; λ̄)

−1 is an M -matrix means that its off-diagonal terms are negative. Thus, Theorem
1 implies ASU ≤ 0 for any group assignment vector g ∈ Γ whenever Dλf > 0. In fact, for
all i such that gi = 0, dȳi

dλ
=
∑

j:gj=1 δijf
j
λ ≤ 0 since δij ≤ 0 for i ̸= j and f j

λ > 0 for all j.

Proof of Lemma 3

Proof. The fact that A is a SDD matrix is immediate from the definition. To see that A is
also a B-matrix, observe that

aii +
∑
j ̸=i

aij > (n− 1)
∑
j ̸=i

|aij|+
∑
j ̸=i

aij =
∑
j ̸=i

((n− 1)|aij|+ aij) ≥ 0

since each term in the last sum is positive. Moreover, for every k ̸= i,

aii +
∑
j ̸=i

aij − naik >
∑
j ̸=i

((n− 1)|aij|+ aij)− naik

= (n− 1)(|aik| − aik) +
∑
j ̸=i,k

((n− 1)|aij|+ aij) (A.9)

≥ 0. (A.10)

It follows that , for i = 1, ..., n, aii > nr+i , as desired.

Proof of Theorem 6

Proof. Clearly, −Dyf is SDD. It is thus invertible and from Ostrowski (1952) we know
δjj > |δij| for i ̸= j, j = 1, ..., n. Now −Dyf [−Dyf ]

−1 = I implies
∑n

m=1−f i
mδmj = 0 for
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i ̸= j, so we can write, for i ̸= j, i = 1, ..., n,

−f i
i δij =

∑
m ̸=i

f i
mδmj

∣∣f i
i δij
∣∣ = ∣∣∣∣∣∑

m ̸=i

f i
mδmj

∣∣∣∣∣
−f i

i |δij| ≤
∑
m ̸=i

∣∣f i
m

∣∣ |δmj|

−f i
i |δij| ≤ δjj

∑
m̸=i

∣∣f i
m

∣∣
|δij| ≤ δjj

∑
m̸=i |f i

m|
−f i

i

|δij| < δjj
1

(n− 1)2
,

where the last inequality follows by the assumption in the theorem statement.
Summing across all n− 1 inequalities for a given j we get

∑
i ̸=j

|δij| < δjj
1

n− 1

(n− 1)
∑
i ̸=j

|δij| < δjj.

It follows from Lemma 3 that [−Dyf ]
−1 is SDD by columns and a B-matrix by columns.

Then Theorem 2 implies MATTS> 0 for any group assignment vector g ∈ Γ whenever
Dλf > 0.
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