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Abstract 
Combining information on household characteristics with data from nearby weather stations, 
we investigate the effect of fluctuations in temperature and rainfall on the incidence of diarrheal 
disease among Peruvian children under age 5 in the high altitude sierra region. Considering 
jointly the role of precipitation and temperature we find that a larger temperature gap, from a 
higher minimum and/ or lower maximum, means less risk for children. Also we see protective 
effects of rain in the current month and negative effects of rain in the prior month. Effects are 
heightened during the rainy season and marginal effects are higher as rainfall amounts rise. 
Access to indoor drinking water and sanitation seem not to make much difference. 

Introduction 
The human costs of climate change are likely to be high, and one place in particular danger is 
Perú. As one paper puts it, “By the end of the 21st century… the tropical Andes may 
experience a massive warming on the order of 4.5–5 °C. Predicted changes in precipitation 
include an increase in precipitation during the wet season and a decrease during the dry 
season, which would effectively enhance the seasonal hydrological cycle in the tropical Andes.” 
(Vuille et al. 2008). This massive warming and amplified variance of precipitation swings could 
have profound human impacts: climate change “will without a doubt affect future access to 
clean drinking water as well as to water for sanitation, irrigation and agriculture, mining 
operations, and hydropower production in the tropical Andes” (Vuille 2013). In an area that is 
already poor, consequences could be catastrophic. 

Climate change is anticipated to raise the average temperature, to create large, problematic 
rainfall anomalies and to increase the frequency of weather and climate extremes (IPCC 2007, 
Correa et al. 2016). Rising temperatures will continue to melt glaciers (Vuille et al. 2008), and 
associated hydrological changes will affect the quantity and quality of water available in Perú, 
greatly affecting the human population both directly via impairing access to water from drinking, 
washing, and sanitation, and also as water tables change, affecting agriculture and shifting 
patterns of economic activity (Mark et al. 2010). Such flooding and droughts can have direct 
effects such as injury, communicable disease, and exposure to pollutants, but also longer term 
effects such as malnutrition and mental health disorders (McMichael et al. 2006, Del Ninno & 
Lundberg 2005).  

This paper’s outcome of interest is diarrheal disease. A number of studies have documented 
the relationship between variation in temperature and/ or rainfall on the one hand and on 
diarrhea on the other. Even small temperature and precipitation changes can have measurable 
impacts on diarrhea and malnutrition (Haines et al. 2006). Chou et al. (2010) linked both 
maximum temperatures and the number of days with heavy rainfall to the incidence of 
diarrheal disease in Taiwan. Bandyopadhyay et al. (2012) link variations in precipitation and 
temperature to the regional prevalence of diarrhea in sub-Saharan Africa. Singh et al. (2001) 
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document something similar on several Pacific islands. Carlton et al. (2013) tracked rainfall but 
not temperatures in Ecuador, finding that heavy rainfall events following dry periods led to 
increased diarrhea incidence. More recently Horn et al. (2018) in Mozambique link increased 
rainfall to an increase in the incidence of diarrhea by about 0.6% - 2%. In Costa Rica Ureña-
Castro et al. (2019) find that hospitalizations for diarrhea peak two months after rainfall events. 
Wang et al. (2018) link rainfall and temperature to hospitalizations for acute diarrhea in Hong 
Kong, with higher temperatures decreasing hospital admissions for diarrhea. Overall, “the 
delayed effect of precipitation on both rotavirus and norovirus remains unclear” (Wang et al. 
2018). 

In Perú, diarrhea is a major factor in child development, with the cumulative effect on child 
growth being larger than even malaria (Lee et al. 2012). Worldwide, “Studies have consistently 
shown that diarrhoea is the single most important infectious disease determinant of stunting of 
linear growth” (Black et al. 2013). Growth is an indicator of a child’s underlying health status, 
and children showing lower levels of physical development for their age are often delayed in 
their mental development as well (Hoddinott & Kinsey 2001). Suboptimal growth increases the 
risk of cognitive, motor, and educational problems as well as of death from infectious diseases 
in childhood (Black et al. 2013). Children with below average height have also thereby a 
permanently reduced mental capacity, decreased productivity, and about a 10% expected 
reduction in lifetime earning potential (Alderman, Hoddinott, & Kinsey 2006).  

Diarrhea tied to exposure to poor sanitation (and thereby to pathogens affecting the ability to 
digest food and retain water properly) has been linked to decreased physical height and/or 
growth (Merchant et al. 2003). Children in Africa are taller than their counterparts in India even 
though the latter children live in households with higher income (and thus most likely with 
better food), which one study attributes in part to sanitation conditions (Spears 2013). A large 
scale review concludes that a 1% increase in sanitation coverage is associated with a 
decrease of about 0.05-0.1% in diarrhea prevalence, but improved water source access is not 
statistically linked to improved child health (Headey and Palloni 2019). 

In several studies, Checkley et al. (2000, 2003, 2004) look at the effect of temperature 
variability on the incidence of diarrhea in one suburb of Lima (coastal Perú) from 1995-1998. 
They found that during the 1987-88 El Niño episode, when mean temperatures in Lima went 
up by up to 5º C, the number of hospital admissions for diarrhea increased dramatically, even 
doubling, with the most dramatic effects during the winter months (Checkley et al. 2000).  A 
second study tracked 224 children for 35 months from 1995-98, linking diarrhea to height 
deficits in children up to 24 months and finding that children contracting diarrhea in their first 
six months of life may be permanently limited in their growth (Checkley et al. 2003). Children 
living in areas with poor access to water are about 1 cm shorter when they are just 24 months 
old, and they have over 50% more episodes of diarrhea than children with better water access 
(Checkley et al. 2004).  
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Few studies have looked at both temperature and rainfall (in spite of the fact that Auffhammer 
et al. (2013) contend that failure to do so creates econometric problems) and only Carlton et al. 
(2013) had a sample larger than a few hundred children. No study we have seen has 
incorporated climate, weather, economic, and environmental variables into one analysis 
investigating child welfare, though writers such as Grace et al. (2015) look at birthweight in a 
similar way. Finally, no study has looked at the impacts of the environment on health in the 
interior of Perú. (Barron et al. 2018 look at the role of cold in exacerbating maternal anemia in 
affecting fetal wellbeing in utero in the sierra of Perú.) 

By combining precise, accurate measurements of precipitation and temperatures with 
measures of child health and development as well as of economic welfare, we observe the 
human impacts of recent weather variation. If we understand the effects of short-term changes, 
we will know better what to expect as larger climatic changes occur. 

Data 

Household Data 
The Demographic and Health Surveys (Measure DHS) have gathered data from 2004-2007 in 
Perú, including geo-references. Since exposure in early childhood is the most damaging, we 
chose data covering children from birth until 5 years old.  

The survey is done annually, but it is neither a panel nor is it a consistently repeated cross 
section. Up to 39 households are grouped in a given year and the geo-reference for a given 
“group” is shifted in a random direction by up to 2.5 km in urban areas or up to 10 km in rural 
areas. Thus, we grouped all observations within 5 km in urban areas and within 20 km in rural 
areas. Since each group refers to data collected in a single year, we compiled groups into 
“sites” to identify areas visited repeatedly by the DHS survey teams in the years from 2004-
2007. 42 urban sites had been sampled in each of the five years. To examine rural areas also, 
we looked for areas that were the most sampled during the period, choosing the 40 sites 
sampled in three or more years.  

Weather data 
We matched the locations of active weather stations as reported on the Perúvian government 
website http://senamhi.gob.pe/ (SENAMHI, the Servicio Nacional de Meteorología e 
Hydrología del Perú) to the DHS data collection sites, choosing 35 stations to maximize 
overlap. From each station we acquired monthly observations from the five year period on 
each of the four variables: median, minimum, and maximum temperatures. (Not all variables 
contain all observations.) Each monthly temperature variable is the mean of daily data, so the 
“maximum temperature” for a given month is actually the mean of the maximum temperatures 
from each day of the month. We took rainfall data from the US Government’s Tropical Rainfall 
Measuring Mission, interpolated to the match the locations of the weather stations. 

http://senamhi.gob.pe/
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Perú consists of three regions: the coast, the jungle, and the mountainous sierra region. We 
focus on the sierra region because both the coast and the jungle interior are constantly quite 
warm. For example, at the weather station Campo de Marte, located in Lima, over 5 years, the 
lowest mean monthly minimum temperature measured was 17.1º C, while highest monthly 
mean maximum was 21.2º. Over the same period, at Tarapoto in the interior, the minimum was 
21.8º and the maximum 32.8º. Similarly, rainfall varies considerably from 0.2 mm in rain-
shadowed, coastal Trujillo to over 500 mm at San Gaban, near the Bolivian border. So, we 
chose to focus on the more heterogeneous temperatures and variable precipitation in the 
Sierra region.  

The Sierra region contains about 11.7 million people, about 38% of the country’s population 
(INEI 2014). Figure 1 shows the locations of the 18 weather stations used in this study, which 
are marked with an S. In the Sierra the mean minimum temperature is 4.7° and the mean 
maximum was 19.1°C. The mean (median) altitude of data in the Sierra region is about 3235 
(3314) meters, while the altitude of data in the other regions combined is 372 (154) meters 
(data not shown).  

We merge the information about weather and climate, on the one hand, with household data, 
including economic and health. This dataset has as one child as an observation and it includes 
the minimum and maximum temperature in the month in which the child’s health data was 
recorded, as well as the month previous. From the DHS we also included an indicator for 
whether the household has a toilet (indoor or outdoor); the child’s age in months; and finally an 
indicator for indoor access to water.  

Sample Statistics are found in Table 1.  

Methods 
To investigate the relationship between diarrheal disease and weather, we have run a variety 
of investigatory regressions using a variety of measures of temperature and precipitation, 
including high, low, and median temperatures from a given month as well as from the previous 
month. Again, as noted above by Auffhammer et al. (2013), econometrically speaking it is 
important to include both temperature and precipitation in some form in each regression. We 
tried using precipitation in the current month as well the previous month, and included each 
temperature variable on its own as well as with each precipitation variable. In the end the 
variables that proved to matter the most were two differences: the current month’s temperature 
spread between maximum and minimum, and the difference between precipitation in the 
current month and the previous month. 

Unfortunately the maximum, median and maximum temperatures are highly correlated (ρ ≈ 
0.9) so we cannot include more than one in any regression. Therefore to investigate the 
relationship between temperatures and health we consider a variety of specifications, including 
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each of these on its own as well as in a few combinations, such as the difference between the 
maximum and minimum temperature.  

Precipitation can have variable effects. Flooding caused by excess rainfall can spread fecal 
material into potable supplies, while low rainfall may force the use of contaminated water 
(Molina 2009, Githeko et al. 2000, Carlton et al. 2013). Thus, access to clean water and 
modern sanitation are likely to help. Indeed, Checkley et al. (2004) affirm that they are 
particularly important in Lima, Perú. 

Higher temperatures can increase food spoilage rates and dry up water sources, concentrating 
contamination. Also warmth can facilitate the reproduction and increase survival rates for both 
the pathogens themselves and vectors such as flies. On the other hand, low temperatures 
should inhibit reproduction of the various organisms that cause the illness.  

Our first investigation considers the nonparametric relationship between diarrhea and our two 
preferred climate variables: current month temperature differentials (i.e. max vs. minimum 
temperatures within the month) and the change in precipitation (i.e. precipitation in the past 
month minus precipitation in the current month). Next, we include these two explanatory 
variables together.  

Next we include a vector of household characteristics. Characteristics such as access to 
indoor water and improved sanitation are expected to cut the incidence of diarrhea. Wealth 
quintile and electricity are also expected to be protective while a dirt floor might be both a 
proxy for poverty and an independent vector through which diarrheal disease is transferred. 
Conditional on these characteristics, it is not clear whether a household being in a rural area 
might be protective (as a reduced population density might mean reduced exposure to 
pathogens) or negative (as amenities such as water treatment are unavailable). Finally, 
altitude is included in all regressions as well. 

Thus, the regressions we estimate take the form 

Diarim = βclimatem + γhi + δs + εi  

where Diar is a dummy variable indicating whether the child had diarrhea in the past two 
weeks. The vector climate represents the two variables described above. Household variables, 
denoted by h, include access to electricity, wealth quintile, rural status, dirt floor in home, 
indoor water, and type of toilet. δs indicates the weather station, to correct for any idiosyncratic 
errors in the local area, while ε indicates an error term at the child (i) and month (m) level.  

All regressions were carried out with both OLS and the logit specifications. For ease of 
interpreting the marginal effect, we report OLS coefficients, but in all cases the signs were 
identical and the p-values of the logit coefficient are similar.  
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Results 
We first consider the nonparametric relationships. As shown in Figures 2 and 3, both climate 
variables show negative relationships overall, with the temperature differential showing a very 
clear relationship while the effect of precipitation is less obvious. We now consider each 
separately. 

The data show that a larger temperature gap, from a higher minimum and/ or lower maximum, 
means less risk for children. When the differential between high and low temperatures is 
greater, that means children are less likely to come down with diarrheal illness. The 
association between colder nights and decreasing pathogen activity is intuitive, particularly in 
the higher altitudes where freezing temperatures are possible. At the same time, our preferred 
measure of temperature difference suggests a protective effect of higher temperatures. Noting 
that in our sample (Table 1) maximum temperatures vary from 9° to 28° (with the mean and 
median both around 19.5°) we suggest that simple thermal comfort may be the protective 
mechanism. In other words, temperature differentials are positively associated with overall 
warmer temperatures and with lower rates of diarrhea. Note that we did evaluate each 
temperature on its own first and found that the difference had a higher F-statistic than either 
the minimum or the maximum on its own. 

A similar finding holds for rainfall: more precipitation in the preceding month is associated with 
diarrhea, while less precipitation in the current month is also so associated. One way to think 
of this is that perhaps rainfall keeps children indoors in the short term but after the rain is over 
children go outside and are exposed to pathogens. Thus neither constant rainfall nor constant 
dry weather increase diarrheal illness. Figure 3 shows the nonparametric relationship between 
the change in precipitation and diarrhea, which shows relatively consistent marginal effects. 
When we considered current month precipitation and past month precipitation separately, the 
past month’s precipitation is much more significant than that of the current month. Overall, 
based on our need to include both variables and within that based on the separate F tests we 
chose to keep these two variables together for all remaining specifications. 

Moving on to parametric regressions, we see that the coefficients are comparable in size 
throughout Table 2. In our most parsimonious specification, shown in column 1 of Table 2, we 
see that both variables on their own are negative and statistically significant. In column 2 we 
see that adding the household characteristics decreases the effect of the temperature 
differential by about 15% and the change in precipitation drops by about 6%. The sign is 
constant and the variables are always significant at the 5% level. Looking at the impact of the 
other covariates we see that while the child’s age and the altitude are always significant, the 
same cannot be said of the household infrastructure. Neither toilet access nor indoor water 
access appreciably affect illness rates. 

In columns 3-4 we include monthly average temperatures and rainfall amounts from the past 
30 years. We find that these baseline temperatures and precipitation amounts are not 
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themselves significant but they do affect the statistical significance of the temperature 
differential. However, the sign is consistent and the size of the temperature coefficient is larger 
than other specifications. Conversely the size of the precipitation coefficient has decreased a 
bit but the sign and significance continue to be strong.  

In Table 3 we try breaking the sample into different groups. The first two columns show the 
effects of limiting the sample to children ages 2 and below. Although the statistical significance 
comes and goes, the coefficients have not changed much; it is difficult to disentangle the 
effects of working with a smaller sample from the actual effect of looking at different age 
groups.  

Columns 3-4 compare the rainy season (October – April) against the rest of the year, and this 
difference is striking. Compared to the baseline regression in column 2 of table 2, impacts 
during the dry season have subsided considerably, with temperature differentials almost 90% 
less impactful and rainfall having about a 30% diminished marginal effect. On the other hand, 
during the rainy season, the importance of temperature rises to nearly three times its baseline 
level. Precipitation also increases in importance by about 30%.   

Column 5 limits the sample to months with at least 10 mm of rainfall, and column 6 considers 
only months with at least 20 mm of rain. The results in these two columns are similar to those 
in the rainy season column: as the amount of rainfall increases, the marginal effects of 
temperature differentials jump, while the effects of additional rainfall climb more slowly. 
Specifically, as we go from a typical month to a month with at least 10 mm of precipitation, the 
effects of temperature increase by almost 90%. With at least 20 mm of precipitation, the effect 
nearly doubles to about 170%.  

Discussion 
The results show that the temperatures and precipitation have a small but significant effect on 
children’s health. In particular, a higher temperature differential in a given month (i.e. lower 
minimum and higher maximum temperatures) is protective. Also we see protective effects of 
rain in the current month and negative effects of rain in the prior month. This is consistent with 
rain in the previous month increasing disease incidence while less rain in the current month 
does the same. 

Overall the effects are not large: under the most bullish scenario (which occurs in the rainy 
season and/ or in months when 20 mm of rain has fallen) the effect of temperature differentials 
is an increase or decrease in diarrheal incidence of about one half of 1%, or about 5 children 
per 1000. The effect of rainfall in a given month accounts for at most about one tenth of 1%, 
about one child per thousand. In the simplest specification, the two variables on their own have 
a F statistic of 7.67, a number that is below most standards for a weak instrument. R-squared 
statistics for all regressions are below 4%. 
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Finally, a brief word about what seems not to matter. We separately tried a large number of 
additional factors, including rural vs. urban, dirt floors, and electricity, but nothing proved 
significant. We tried separately including freezing temperatures, but beyond their effect on 
minimum temperatures, no effect was noted. And we were unable to restrain ourselves from 
including indoor water and sanitation access, but as you can see in tables 2 and 3, it never 
contributed, reifying the findings of Pickering et al. (2019) that interventions need to be 
substantial to achieve a sustained impact on diarrhea. 

Conclusion 
Water shortages in Perú are likely to exacerbate the impacts of climatic change, and the 
situation looks increasingly “dire” (Bury et al. 2013). Anticipating future effects requires using 
precisely matched household and weather data and considering a broad variety of variables. 
The good news is that clarifying the linkages, most crucially at the local and seasonal levels, 
lays the groundwork for potential policy solutions (Altizer et al. 2013).  

In the high altitude environs of central, sierra Perú, where temperatures rarely drop below 
freezing and never get as high as 30°C, we have identified weather conditions that affect the 
prevalence of diarrhea. Remembering the econometric imperative to always consider 
precipitation and temperature jointly, we determine that the best specification includes the 
difference between minimum and maximum temperatures as well as the difference between 
the current month’s precipitation and that from the previous month.  

Higher maximum and lower minimum temperatures are protective, likely for opposite reasons: 
minimum temperatures chill the environment, reducing bacterial activity, while maximum 
temperatures (which again in this data are only between 9° and 28°) may only provide thermal 
comfort. Meanwhile precipitation in the past month increases the prevalence of diarrhea while 
precipitation in the current month is protective. This is in line with previous by Carlton et al. 
(2013) that rainfall after dry periods increases diarrhea while continuous precipitation 
decreases incidence following wet periods, and with Ureña-Castro et al. (2019) that cases bad 
enough to warrant hospitalization are tied to precipitation two months prior.  

Perhaps not surprisingly impacts are much stronger during the rainy season and in months 
when some rain has already fallen. Effects seem slightly larger and are more statistically 
significant for older children, but point estimates of impacts are not much different between the 
two. Unfortunately also in line with Carlton et al. (2013) sanitation does not make much 
difference, though unlike the present study they find that treating drinking water can help. 

Links between the physical environment and health are always complicated. As climate 
change raises temperatures across this threshold, the incidence of diarrhea is likely to 
increase, so it behooves us to improve child safety through all means available to us.  
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Table 1. Sample Statistics 

 
Mean SD Min Max 

Max Temp Current Month  19.35 3.83 9.4 33.2 
Min Temp Current Month  4.46 4.73 -10.8 21.3 
Max - Min Current Month 14.89 4.03 5.1 27.9 
Precip Current Month (mm) 62.92 57.37 0 274.5 
Precip Diff Current - Last Month (mm)  -10.34 49.28 -255.3 204.5 
Altitude 3340 624.7 420 4723 
Age (months)  29.86 17.18 0 59 

     Had diarrhea in past two weeks 0.16 
 

0 1 
No toilet (1/0)  0.31 

 
0 1 

Indoor plumbing (1/0)  0.62 
 

0 1 
1 = rural 0 = urban  0.72 

 
0 1 

Electricity (1/0)  0.59 
 

0 1 
Dirt floor (1/0)  0.72 

 
0 1 
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Table 2. Covariate Analysis 
 (1) (2) (3) (4) 
 Had diarrhea in 

past two weeks 
Had diarrhea in 
past two weeks 

Had diarrhea in 
past two weeks 

Had diarrhea in 
past two weeks 

Max - Min temp 
current mth 

-0.00765*** -0.00654*** -0.00941* -0.00751 
(0.00219) (0.00217) (0.00514) (0.00549) 

     
Precip: current - last 
mth (mm) 

-0.000394** -0.000371** -0.000375** -0.000361** 
(0.000175) (0.000173) (0.000179) (0.000176) 

     
No toilet access = 1  0.00828 0.00735 0.00741 
  (0.0143) (0.0143) (0.0143) 
     
Age (months)  0.00342** 0.00343** 0.00344** 
  (0.00144) (0.00144) (0.00144) 
     
Age squared / 100  -0.0107*** -0.0108*** -0.0108*** 
  (0.00234) (0.00234) (0.00234) 
     
Indoor water  -0.00901 -0.00983 -0.00988 
  (0.0135) (0.0136) (0.0136) 
     
Altitude in 100's of 
meters 

 -0.0403*** -0.0389*** -0.0384*** 
 (0.0132) (0.0133) (0.0133) 

     
Min temp, historical 
avg 

  0.000218  
  (0.00644)  

     
Precipitation, 
historical avg 

  -0.000230 -0.000293 
  (0.000227) (0.000250) 

     
Monthly high - low, 
hist avg 

   -0.00351 
   (0.00730) 

     
Constant 0.266*** 0.413*** 0.462*** 0.489*** 
 (0.0330) (0.0568) (0.111) (0.0891) 
Observations 3292 3292 3292 3292 
R2 0.005 0.034 0.035 0.035 
Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01  
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Table 3. Subgroup Analysis 
 (1) (2) (3) (4) (5) (6) 
 24 mos or 

under 
Over 24 

mos 
Dry season Rainy 

season 
Min 10 mm 

rain 
Min 20 mm 

rain 
Max - Min temp current 
mth 

-0.00540 -0.00647*** -0.000813 -0.0204* -0.0123*** -0.0177*** 
(0.00391) (0.00245) (0.00496) (0.0107) (0.00352) (0.00461) 

       
Precip: current - last mth 
(mm) 

-0.000352 -0.000376* -0.000265 -0.000494* -0.000369* -0.000436* 
(0.000315) (0.000193) (0.000291) (0.000297) (0.000195) (0.000224) 

       
No toilet access = 1 -0.00952 0.0228 0.00895 0.000261 0.0124 0.000330 
 (0.0256) (0.0161) (0.0168) (0.0277) (0.0185) (0.0216) 
       
Age (months) 0.0236*** -0.0139** 0.00370** 0.00287 0.00333* 0.00338 
 (0.00629) (0.00642) (0.00171) (0.00265) (0.00183) (0.00210) 
       
Age squared / 100 -0.0671*** 0.0123 -0.0112*** -0.0102** -0.0102*** -0.0104*** 
 (0.0251) (0.00758) (0.00277) (0.00428) (0.00296) (0.00339) 
       
Indoor water -0.00756 -0.00587 -0.00744 -0.0217 -0.00592 -0.00754 
 (0.0242) (0.0154) (0.0163) (0.0249) (0.0172) (0.0200) 
       
Altitude in 100's of 
meters 

-0.0601** -0.0260* -0.0456*** -0.00757 -0.0195 -0.0411** 
(0.0233) (0.0151) (0.0152) (0.0322) (0.0162) (0.0209) 

       
Constant 0.353*** 0.641*** 0.330*** 0.494*** 0.406*** 0.545*** 
 (0.102) (0.142) (0.0954) (0.183) (0.0741) (0.0968) 
Observations 1360 1932 2161 1131 2171 1651 
R2 0.028 0.023 0.034 0.030 0.030 0.036 

The dependent variable in all regressions is the incidence of diarrhea in the past two weeks. Standard errors in parentheses. * 
p < 0.10, ** p < 0.05, *** p < 0.01 
 



16 
 

Figure 1. Locations sampled 

 

(S = weather station)
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Figure 2. Temperature differentials & diarrhea rates  

 

  



18 
 

Figure 3. Change in precipitation & diarrhea rates 

 


	Title
	Manley_diarr_Aug19-1
	Abstract
	Introduction
	Data
	Household Data
	Weather data

	Methods
	Results
	Discussion
	Conclusion
	Works Cited
	Table 1. Sample Statistics
	Table 2. Covariate Analysis
	Table 3. Subgroup Analysis
	Figure 1. Locations sampled
	Figure 2. Temperature differentials & diarrhea rates
	Figure 3. Change in precipitation & diarrhea rates



