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Abstract

This paper elucidates the role played by the heterogeneity of interactions

between the endogenous variables of a model in determining the model�s behav-

ior. It is known that comparative statics are well-behaved if these interactions

are relatively small, but the formal condition imposed on the Jacobian which

typically captures this idea�diagonal dominance�ignores the distribution of the

interaction terms. I provide a new condition on the Jacobian�mean positive

dominance�which better captures a trade-o¤between the size and heterogeneity

of interaction terms. In accord with Samuelson�s (1947) correspondence princi-

ple, I also show that mean positive dominance yields stability and uniqueness

results. Applications are provided to optimization problems, di¤erentiable

games, and competitive exchange economies.
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1 Introduction

Comparative statics analysis is complicated by interactions between endogenous vari-

ables. To see this, consider a game-theoretic context where the total equilibrium e¤ect

of a positive shock on a player�s action can be decomposed into a partial e¤ect and

an interactions e¤ect. The partial e¤ect is the increase in the player�s action holding

constant all other players�actions. The interactions e¤ect, which accounts for all the

adjustments in players�best responses due to changes in other players�actions, is the

di¤erence between the total e¤ect and partial e¤ect. If there are negative interactions

where a player�s best response is decreasing in the action of some other player, then

the partial e¤ect and interactions e¤ect may have opposite signs. Consequently, the

total e¤ect and partial e¤ect may have opposite signs as well.

In broad terms, two situations give rise to comparative statics which are �well-

behaved,�meaning that the total e¤ect has the same sign as the partial e¤ect. The

�rst is when the interactions e¤ect has the same sign as the partial e¤ect, and the

second is when the interactions e¤ect is small relative to the partial e¤ect.

Monotone economic models tend to generate an interactions e¤ect that has the

same sign as the partial e¤ect. This insight is well-known from the gross substitutes

property in general equilibrium settings. More recently, without relying on purely

mathematical assumptions associated with the implicit function theorem (IFT) like

smoothness, the monotone comparative statics (MCS) literature has shown that the

equilibrium set of a model with complementarity is increasing in a parameter if some

form of the single crossing property between the endogenous variables and the para-

meter is satis�ed.1 However, many economic environments fall outside of the MCS

framework or do not exhibit the requisite complementarity. With some notable ex-

ceptions2 the lattice-based techniques developed in the MCS literature have yielded

little insight in these settings. In fact, Roy and Sabarwal (2008) show that the set of

equilibria in games with strategic substitutes is not a lattice in general.

To ensure that the interactions e¤ect is small relative to the partial e¤ect, in

smooth models one typically places restrictions on the o¤-diagonal terms of the Jaco-

bian relative to the terms along the main diagonal, for the o¤ diagonal terms capture

1Early contributions to the monotone comparative statics literature include Topkis (1998), Vives
(1990), Milgrom and Roberts (1990), and Milgrom and Shannon (1994).

2For example, Amir and Lambson (2000), Villas-Boas (1997), Acemoglu and Jensen (2013) and
Hoerning (2003), among others.
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interactions e¤ect while the terms on the main diagonal contribute to the partial

e¤ect.3 A standard way to formalize this idea is to require that the Jacobian is

diagonally dominant, that is, in each row the absolute value of the term on the main

diagonal is greater than the sum of the absolute values of the o¤-diagonal terms. But

this condition alone is not enough for well-behaved comparative statics. For example,

Dixit (1986) also requires that the o¤-diagonal terms are identical by rows, Simon

(1989) requires monotonicity but allows for nonpositive shocks, and Jinji (2014) im-

poses an additional dominance condition on the minors of the Jacobian.

This paper captures another factor contributing to well-behaved comparative sta-

tics: homogeneity of interaction e¤ects. Ill-behaved comparative statics can arise

if strong negative interactions are concentrated among a subset of the equilibrium

equations. But if the same cumulative interactions e¤ect is distributed evenly across

all equations, comparative statics may be well-behaved. Thus, a trade-o¤ exists be-

tween the heterogeneity and magnitude of interaction e¤ects in the sense that a larger

cumulative magnitude can be tolerated if there is less heterogeneity, and vice versa,

while still retaining well-behaved comparative statics. Diagonal dominance restricts

only the cumulative magnitude, so in cases where there is homogeneity, this condition

can place a stronger restriction on the magnitude of the interaction e¤ects than is

required. In fact, I show that the new condition I provide generalizes the results in

Dixit (1986) since homogeneity is imposed in an ad hoc manner in that paper.

Formally, I require that, for each row (column) of the Jacobian, the mean is posi-

tive and larger than each of the o¤-diagonal elements. This mean positive dominance

property is simple to verify and is su¢ cient for well-behaved comparative statics

at the aggregate (individual) level for certain parameter shocks. The result for the

aggregate, de�ned as an increasing function of the sum of the equilibrium vector�s

elements, applies to any positive partial e¤ect. The individual level result applies to

the ith element of the equilibrium vector for shocks which are mean positive domi-

nant in element i; that is, where the average partial e¤ect is positive and greater than

each of the partial e¤ects to elements other than i. Existing individual level results

in non-monotone models typically restrict attention to shocks that are positive for

the ith element and zero elsewhere (e.g., Dixit 1986; Corchón, 1994; Acemoglu and

Jensen, 2013). These idiosyncratic shocks are a subset of mean positive dominant

3See Roy and Sabarwal (2010) and Monaco and Sabarwal (2015) for applications of this insight
to nonsmooth environments.
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shocks.

In accord with Samuelson�s (1947, especially Chapter 9) �correspondence princi-

ple,�a principle which refers to the intimate connection between comparative statics

and stability, I also show that equilibrium is stable if the mean positive dominance

property is satis�ed subject to some additional conditions.4 In addition, if the mean

positive dominance condition applies globally (or only locally but with additional

restrictions) then there is at most one equilibrium.

These powerful conclusions build o¤ of fairly recent results from the linear algebra

literature. Carnicer, Goodman and Peña (1999) show that matrices with the mean

positive dominance property, termed B�matrices in Peña (2001), have a strictly
positive determinant. The class of B�matrices appears to be new to the economics
literature. These matrices have a rich set of properties including: B�matrices are
P�matrices; a symmetric B�matrix is positive de�nite; a B�matrix whose transpose
is also a B�matrix is positive stable and positive de�nite; and if the sum of a matrix
and its transpose is a B�matrix then this sum and each component of the sum is

positive de�nite.

These properties are often imposed on the Jacobian of an equilibrium system

in order to prove �nice� properties of smooth economic models. For example, the

P�matrix property allows one to apply Gale and Nikaido�s (1965) global univalence
result to prove uniqueness. Rosen�s (1965) �diagonal strict concavity�condition for

uniqueness in concave games is satis�ed if the sum of the Jacobian of implicit best

response functions and its transpose is negative de�nite. The index-theory-based

uniqueness theorems in Varian (1975), Kehoe (1980) and Kolstad and Mathiesen

(1987) require a positive determinant. Matrix stability is important for stability

in continuous time, and so on. However, these mathematical conditions have no

inherent economic interpretation, so it is useful to �nd meaningful conditions under

which these properties are satis�ed. The class of B�matrices provides some progress
on that front.

Several applications in Section 4 enable comparison with the literature and illus-

trate the broad reach of the results. In the �rst application I apply the results to the

4Although Samuelson (1947) coined the term, he never provided a formal de�nition, and therefore
di¤erent authors de�ne the correspondence principle di¤erently. However, Samuelson did illustrate
this principle through a series of examples, and it is clear from these examples that he thought of
the correspondence principle as referring to a large intersection between the set of conditions which
imply well-behaved comparative statics and the set of conditions which imply stable dynamics.
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comparative statics of optimization problems. This task is facilitated by the fact that

a symmetric B�matrix is positive de�nite. Consequently, if the Hessian of a function
is a B�matrix, then it is strictly convex. I call such functions B� convex : Equipped
with this observation, I show that if the objective function of an unconstrained opti-

mization problem is B�concave at a solution, then the sum of the solution vector is

increasing in the parameter if the objective function has increasing di¤erences, and

that an element of the solution vector is increasing if the shock is mean positive domi-

nant in the same element. This result is then applied to generalize some comparative

statics conclusions in Rochet and Tirole (2003) regarding platform monopolies.

The results can also be applied to the comparative statics of constrained optimiza-

tion problems such as the consumer�s utility maximization problem. To this end,

I provide a new condition on the utility function under which all goods are normal.

The condition is that the average percentage change in marginal utility of all goods

caused by a unit increase in one good i is nonpositive and no greater than the percent-

age change in the marginal utility of any particular good di¤erent from i: In contrast

to Chipman (1977) and Quah (2007) who require all goods to be complements, this

condition allows some (or all) goods to be substitutes.

The next application is to games with convex strategy sets and di¤erentiable payo¤

functions. When applied to the standard Cournot oligopoly model, the comparative

statics conclusions reduce to the union of conditions provided in Dixit (1986) and

Corchón (1994). In this way, the conditions provided can be viewed as a generaliza-

tion of the Dixit-Corhón conditions to a very general di¤erentiated products Cournot

oligopoly. In fact, the case where each �rm has its own inverse demand function and

costs depend on other �rms�output is included in this category.

I turn to competitive exchange economies in the �nal application. In this context,

it is well-known that gross substitution imparts nice uniqueness, comparative statics,

and stability properties on the economy. It turns out that mean positive dominance

in partial price e¤ects delivers similar properties yet allows some goods to be com-

plements. Mean positive dominance formalizes the idea that the general equilibrium

model is well-behaved when own-partial price e¤ects dominate cumulative cross par-

tial price e¤ects. Also, since a change in the endowment of one good can change

the consumption of all other goods through wealth e¤ects, this application depends

crucially on the fact that the main comparative statics result allows for parameter

shocks which are mean positive dominant.
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The next section establishes the general framework of analysis. In Section 3

I de�ne and establish properties of B�matrices and use these properties to prove
comparative statics, stability and uniqueness results. A subsection is dedicated to

discussing how mean positive dominance captures the heterogeneity-magnitude trade-

o¤. Section 4 contains applications and Section 5 concludes.

2 The Environment

Consider the function f : X � T ! Rn where X � Rn and T � Rs are open sets.
The component functions of f are fi : X � T ! R for i = 1; :::; n. For the sake of

clarity and interpretation, we assume s = 1; but the results generalize to s �nite.

Given a parameter �t 2 T; call �x = x(�t) 2 X an equilibrium vector if

f(�x; �t) = 0: (1)

Note that if f(x; �t) = x� g(x; �t); then �x is a �xed point of g: Since our interest is in
comparative statics, assume directly that an equilibrium exists.

Also, restrict attention to equilibria at which f is continuously di¤erentiable and

detDxf(�x; �t) 6= 0; where Dxf(�x; �t) is the Jacobian of f evaluated at (�x; �t): By the

IFT, the e¤ect of a marginal increase in the parameter t on the equilibrium vector

x(�t) is

Dx(�t) = �[Dxf(�x; �t)]
�1Dtf(�x; �t): (2)

More insight into comparative statics can be gained if we assume @fi(�x;�t)
@xi

6= 0 for
all i: Then letting fij � @fi(x;t)

@xj
and totally di¤erentiating system (1) at (�x; �t) we get

dxi(�t)

dt| {z }
TE

= �@fi
@t

1

fii| {z }
PE

+

nX
j 6=i;j=1

�fij
fii

dxj(�t)

dt| {z }
IE

; i = 1; :::; n: (3)

The total e¤ect (TE) of a parameter change on �xi can be decomposed into a partial

e¤ect (PE) and an interactions e¤ect (IE): The interaction terms, (�fij=fii)j 6=i
describe how the value of �xi changes in response to a one unit increase in �xj; and the

interactions e¤ect on �xi aggregates the interaction terms scaled by the total e¤ect on
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�xj.5

In matrix notation, let � be a diagonal matrix with diagonal entries (1=f11; 1=f22; :::; 1=fnn):

Then the matrix of interaction terms is I��Dxf(�x; �t) and the vector of partial e¤ects

is ��Dtf(�x; �t): The system of total e¤ects (3) can be written

Dx(�t) = ��Dtf(�x; �t) + (I � �Dxf(�x; �t))Dx(�t); or

�Dxf(�x; �t)Dx(�t) = ��Dtf(�x; �t);

which is equivalent to equation (2). I will refer to �Dxf(�x; �t) as the normalized

Jacobian.

Let H : R! R be a C1 and increasing function, and let H(��) � H(�ni=1xi(�t)) be
the equilibrium aggregate. The main objective of this paper is to �nd su¢ cient con-

ditions under which the equilibrium aggregate, or the ith element of the equilibrium

vector, �xi; is locally increasing in t without actually inverting the Jacobian. The

conditions I provide can be applied to [Dxf(�x; �t) and Dtf(�x; �t)] or to [�Dxf(�x; �t) and

�Dtf(�x; �t)]:

The equilibrium of many economic models can be analyzed in this framework, but

the following model will be used to help with the exposition of the results.

Demand for social goods. Suppose n � 2 consumers indexed by i allo-

cate income mi between good X with price px and good Y with price py. Con-

sumer i0s preferences are represented by the C1, strictly quasiconcave utility function

ui(xi; yi; x�i); where xi and yi are consumer i0s consumption levels of goods X and

Y ; while x�i = fx1; :::; xi�1; xi+1; :::; xng is the vector of others�consumption of good
X : In this sense good X is a social good while good Y is a private good.6

Consumers solvemax(xi;yi)2Bi ui(xi; yi; x�i); where Bi = f(xi; yi) � 0 : pxxi + pyyi � mig
is the set of a¤ordable consumption bundles. If demand can be solved explicitly, de-

note the unique solution to this problem as

�xi = gi(x�i; p;mi) and �yi = hi(x�i; p;mi);

5Applied to a game theoretic context where each equation represents a player�s best response
function, there is a clear connection to the social interactions literature. In this setting, say that
the interactions e¤ect reinforces the partial (or private) e¤ect if sgn(PE) = sgn(IE) 6= 0; the
interactions e¤ect counteracts the private e¤ect if sgn(PE) = �sgn(IE) 6= 0. The social multiplier
is TE

PE ; and this is greater than one if and only if the interactions e¤ect has the same sign as the
partial e¤ect.

6To use alternative terminology, this is a model of interdependent preferences (e.g., Pollak, 1976)
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where gi and hi are consumer i0s demand functions for goods X and Y ; respectively.
Focus on the market for the social good. Only pure strategy equilibria exist since

�xi is unique. Letting m = (m1; :::;mn), an equilibrium demand system given (p;m)

is de�ned as

f(�x; �p; �m) � �x� g(�x; �p; �m) = 0 (4)

Since every individual�s demand is continuous and constrained to Bi, g is continuous
and maps a compact and convex set into itself. Therefore, an equilibrium exists by

Brouwer�s �xed point theorem.

In this setting the vector of parameters is t = (p;m); but of primary interest is

how the market demand for the social good (i.e., the equilibrium aggregate), ��(px) =

�ni=1gi(�xi; �px); varies with price px when demand is di¤erentiable at equilibrium and

good X is not a Gi¤en good: @gi
@px

� 0 for all i:

3 Comparative Statics and Mean Positive Domi-

nance

Consider the linear system of equations

Ay = b (5)

where A is an n� n matrix of real coe¢ cients, y is an n� 1 vector of real variables,
and b is an n� 1 vector of real parameters. If A is invertible then y = A�1b: This is
the format of the comparative statics equation (2), so the main objective of this paper

is formally equivalent to determining conditions on A and b under which
Pn

i=1 yi � 0
and yi � 0: The analysis will be conducted in this framework.
I begin with some elementary observations which highlight the importance of the

row sums and column sums of A�1: If A is invertible, let A�1 = � be its inverse with

typical element �ij: Call
Pn

i=1 �ij the jth inverse column sum of A, and let NICS
be the class of invertible matrices with nonnegative inverse column sums. Similarly

call
Pn

j=1 �ij the ith inverse row sum of A; and let NIRS be the class of invertible
matrices with nonnegative inverse row sums. The vector b is positive if b � 0; the

vector b is uniform if bi = bj for all i; j 2 f1; :::; ng ; the vector b is positive only in
element i if bi > 0 and bj = 0 for all j 6= i:
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The proof of the following lemma is relegated to the Appendix, as is any proof

not contained in the text.

Lemma 1 Consider the linear system Ay = b given in (5).

1.
Pn

i=1 yi � 0 whenever b is positive if and only if A 2 NICS:

2. yi � 0 whenever b is positive only in element i if and only if �ii � 0:

3. y � 0 whenever b 6= 0 is positive and uniform if and only if A 2 NIRS:

Going forward, the theory of B�matrices plays a central role in the analysis. A
B�matrix is a square matrix whose row means are positive and larger than each of
the o¤-diagonal terms of the same row. Precisely, for each i = 1; :::; n; let

a+i = max f0; aijjj 6= ig :

Then the n� n matrix A = (aij) is a B�matrix if and only if, for all i = 1; :::; n;

nX
j=1

aij > na
+
i : (6)

In economic applications it will be helpful to allow for a weak version ofB�matrices.
Call A a B0�matrix if, for all i = 1; :::; n;

nX
j=1

aij � na+i : (7)

Clearly, every B�matrix is a B0�matrix.
The term �B�matrix�is introduced in Peña (2001). A more descriptive moniker

may be �mean positive dominant�matrices, and at times I will refer to inequalities

(6) and (7) as the (strict) mean positive dominance condition.

The next lemma asserts that mean positive dominance is preserved under positive

row scaling, addition of nonnegative numbers to the diagonal, and matrix addition.

The last property is important for aggregation. The trivial proof is omitted.

Lemma 2 Let A and A0 be B(B0)�matrices. Let D be a diagonal matrix with a

strictly positive diagonal, and let D0 and D00 be nonnegative diagonal matrices. Then

DA+D0A0 +D00 is a B(B0)�matrix.
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B�matrices and B0�matrices possess many useful properties. Carnicer, Good-
man, and Peña (1999) prove that a B�matrix has a strictly positive determinant.
Peña (2001) demonstrates that B�matrices have strictly positive diagonals and that
the principal submatrices ofB�matrices are alsoB�matrices, which impliesB�matrices
are P�matrices.7 Certainly, the same conclusions apply if the transpose of a matrix

is a B�matrix since the determinant of a matrix equals the determinant of its trans-
pose. The next lemma extends a weak version of these results to B0�matrices and
provides some new properties that will be used in this paper.

Lemma 3 Let A or AT be a B0�matrix. Then

1. detA � 0;

2. the principal submatrices of A are also B0�matrices;

3. A is a P0�matrix8;

4. if A is also symmetric, then A is positive semide�nite;

5. A has a nonnegative diagonal;

6. if A and AT are B(B0)�matrices, then A+AT , A and AT are positive (semi)de�nite9;

7. if A+AT is a B(B0)�matrix, then A+AT ; A and AT are positive (semi)de�nite;
and

8. if A and AT are B�matrices, then A is positive stable.10

The next lemma provides a tight relationship between the B0�matrix property
and the inverse row and inverse column sums. This result is central to the main

comparative statics theorem, so a proof is provided here.

Lemma 4 1. If A is an invertible B0�matrix, then A 2 NICS and �ii � 0 for

all i:
7A P�matrix is a matrix with positive principal minors.
8A P0�matrix is a matrix with nonnegative principal minors.
9A is positive (semi)de�nite if z0Az(�) > 0 for every nonzero vector z 2 R: A does not need to

be symmetric.
10A matrix is positive stable if all of its eigenvalues have positive real parts.

9



2. If AT is an invertible B0�matrix, then A 2 NIRS and �ii � 0 for all i:

Proof. (1) First suppose A is an invertible B0�matrix. Let � =
�
ij
�
be the cofactor

matrix of A. Since A�1 = �T

detA
; the inverse column sums are

Pn
j=1

ij
detA

: Since A is

an invertible B0�matrix we have detA > 0; and by extension
Pn

j=1 ij � 0 for all i:
To see this, let

Ai (1) =

266666666664

a11 a12 � � � � � � a1n

a21 a22 a2n
...

. . .
...

1 1 1 1
...

...

an1 an2 � � � � � � ann

377777777775
be the matrix obtained by replacing the ith row of A with ones. Clearly, Ai(1) is a

B0�matrix so expanding along the ith row we have detAi(1) =
Pn

j=1 ij � 0 for all
i: Thus, A 2 NICS:
To see that A�1 has a nonnegative diagonal, note that the (i; i)th element of A�1

is �ii =
ii
detA

; and ii is the (i; i) minor of A: By parts 1 and 2 of Lemma 3, ii � 0:
(2) Now suppose AT is an invertible B0�matrix. Then, as just shown, AT 2

NICS: It follows from (AT )�1 = (A�1)T that A 2 NIRS: The proof that A�1 has
a nonnegative diagonal is the same for when A is an invertible B0�matrix.

We need a few more de�nitions before stating the main comparative statics result

of this section. De�ne

b+�i = max fb1; :::; bi�1; bi+1; :::; bng

as the largest element of b excluding element i: Then the vector b is mean positive

dominant in element i if the sum of the elements of b is nonnegative and the value

of every element but i is less than the mean:
Pn

i=1 bi � max
�
0; nb+�i

	
: Say that

the vector b is strictly mean positive dominant in element i if the inequality is strict:Pn
i=1 bi > max

�
0; nb+�i

	
:

Theorem 1 (Comparative Statics) Consider the linear system Ay = b.

1. Let A be an invertible B0�matrix. Then

10



(a)
Pn

i=1 yi � 0 whenever b is positive,

(b) yi � 0 whenever b is positive only in element i; and

(c) the inequality is reversed in parts (a) and (b) when �b is positive and,
respectively, when �b is positive only in element i:

2. Let AT be an invertible B0-matrix. Then

(a) y � 0 whenever b is positive and uniform,

(b) yi � 0 if b is mean positive dominant in element i;

(c) yi > 0 if AT is a B-matrix and b is strictly mean positive dominant in

element i; and

(d) the inequality is reversed in part (a) when �b is positive and uniform, and
in parts (b) and (c) if b = �c and c is (strictly) mean positive dominant.

Proof. (1) and (2a) follow from Lemmas 1 and 4.

(2b) By Cramer�s rule, yi = detAi
detA

, where Ai is the matrix obtained from A by

replacing column i with the vector b. detA > 0 since AT is a B�matrix and detAT =
detA: If b is mean positive dominant in element i, then ATi is a B0�matrix. Hence,
detAi � 0:
(2c) If AT is a B�matrix and b is strictly mean positive dominant then ATi is a

B�matrix, so detAi > 0:
(2d) The �rst part is obvious. If b = �c then yi = � det ~Ai

detA
; where ~Ai is the matrix

obtained from A by replacing column i with the vector c:

When applied to the comparative statics equation (2), Theorem 1 implies that

the equilibrium aggregate is locally nondecreasing in t; dH(��)=dt � 0; whenever

1. Dxf(�x; �t) is an invertible B0�matrix and �Dtf(�x; �t) � 0; or

2. �Dxf(�x; �t) is an invertible B0�matrix and Dtf(�x; �t) � 0; or

3. �Dxf(�x; �t) is an invertible B0�matrix and ��Dtf(�x; �t) � 0.

Similarly, the ith element of the equilibrium vector �x is nondecreasing in t; dxi(�t)=dt �
0; if

11



1. [Dxf(�x; �t)]
T is an invertible B0�matrix and �Dtf(�x; �t) is mean positive domi-

nant in element i; or

2. [�Dxf(�x; �t)]
T is an invertible B0�matrix and Dtf(�x; �t) is mean positive domi-

nant in element i; or

3. [�Dxf(�x; �t)]
T is an invertibleB0�matrix and��Dtf(�x; �t) is mean positive dom-

inant in element i:

A few remarks are in order. First, a B�matrix must have a strictly positive
diagonal while a B0�matrix has a nonnegative diagonal. Since the normalized Jaco-
bian has ones on the main diagonal, Theorem 1 cannot be applied to ��Dxf(�x; �t).

Second, if � � 0; then Dxf(�x; �t) is a B(B0)-matrix if and only if �Dxf(�x; �t) is a

B(B0)�matrix by Lemma 2: These facts allow for some �exibility when verifying the
mean positive dominance condition.

The question also arises as to the way forward with comparative statics if, in some

model, it is natural that fii < 0 and fjj > 0 for some i 6= j: Certainly, it is possible
to apply Theorem 1 to the normalized Jacobian and vector of partial e¤ects as long

as fkk 6= 0 for any k 2 f1; :::; ng :11 But sometimes it may be more convenient to deal
directly with the (non-normalized) Jacobian. This is possible. For example, in the

context of the linear system Ay = b; suppose A = NM and b = Nq where MT is a

B0�matrix, q is mean positive dominant in element i, and N is a diagonal matrix

whose diagonal entries belong to the set f�1; 1g. Then yi � 0 since NMy = Nq i¤
My = q: The analogous technique can be applied to analyze aggregate comparative

statics.

Theorem 1 is notable for several reasons. First, the terms of the Jacobian may

take any sign, meaning that any type of interaction is allowed. This stands in contrast

to existing comparative statics results which restrict the sign of interaction in some

way. For example, Simon (1989) studies the case where A is diagonally dominant

with a strictly positive diagonal and nonpositive o¤-diagonals. Dixit (1986) studies

diagonally dominant matrices whose o¤-diagonal terms are identical by rows. In

justifying this assumption, Dixit writes (p. 119) that without it, �no structure could

be imposed on [the matrix] inverse, and no meaningful results could emerge.�Jinji

(2014) allows for any sign, but the condition requires diagonal dominance as well

11If fkk = 0 for some k and the Jacobian or its negation is a B0�matrix, then the kth row contains
only zeros, so the Jacobian is not invertible.
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as a restriction on the minors of order (n � 2) of the Jacobian, so it is not clear
how much insight is gained over simply inverting the Jacobian. Finally, the MCS

literature restricts attention to non-negative o¤-diagonal terms, a point which will

become clearer in the application to optimization problems below.

Second, apart from the literature on aggregative games, this is one of the few re-

sults of which I am aware that provides comparative statics results for the equilibrium

aggregate which is not a simple corollary to monotonicity results. The comparative

statics of the equilibrium aggregate has applications to contests, the slope of mar-

ket demand for social goods, average relative price levels in general equilibrium, and

industry output in Cournot oligopoly, among others.

Third, many existing comparative statics results for the ith element of �x assume

that the partial e¤ect is positive only in element i (e.g., Dixit 1986; Cochón, 1994;

Acemoglu and Jensen, 2013).12 Part 1b of Theorem 1 addresses this case directly,

but parts 2b-c include it as a special case as partial e¤ects that are positive only

in element i are mean positive dominant in element i: The generalization to mean

positive dominant partial e¤ects will prove particularly important in the application

to general equilibrium.

Fourth, the result provides new insight into the forces which produce well-behaved

comparative statics. Diagonal dominance formalizes the intuition that well-behaved

comparative statics should be expected when the interaction terms are limited in

magnitude. However, in a point which I will develop at length in the next subsection,

mean positive dominance illustrates that the heterogeneity of interaction e¤ects plays

an important role, too.

Finally, B�matrices can also be used for stability, uniqueness and existence re-
sults. Uniqueness follows from Gale and Nikaido�s (1965) classical result; both ex-

istence and uniqueness follow from index theory (e.g., Dierker (1972) and Varian

(1975)).

For stability, in the tradition of general equilibrium tâtonnement it is common

to assume that the dynamics of an economic model are governed by the di¤erential

equations
dxi
d�

= cifi(x; �t) for i = 1; :::; n; (8)

where � is the time variable and ci > 0 is a positive constant. The idea of system

12One exception is Simon (1989), but the analysis is limited to the context described two para-
graphs above.
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(8) is that the speed of adjustment is positively related the distance away from an

equilibrium, where an equilibrium �x arises when f(�x; �t) = 0: Refer to this model as

tâtonnement dynamics.

Let C be the diagonal matrix with diagonal entries (c1; :::; cn): It is known that

equilibrium �x is locally asymptotically stable if and only if eigenvalues of the Jacobian

of system (8), CDxf(�x; �t); have negative real parts. We then have the following result.

Theorem 2 (Stability) Assume fii(�x; �t) < 0 and consider tâtonnement dynamics

described by system (8). Any of the following conditions is su¢ cient for �x is locally

asymptotically stable.

1. �Dxf(�x; �t) is a symmetric B�matrix.

2. �Dxf(�x; �t) and [�Dxf(�x; �t)]
T are B�matrices and ci = �c > 0 for all i:

Proof. (1)-(2)The proof of each statement applies part 8 of Lemma 3, which re-
quires us to show only that �CDxf(�x; �t) and [�CDxf(�x; �t)]

T are B�matrices. That
�CDxf(�x; �t) is a B�matrix is immediate from Lemma 2 since C is a diagonal matrix
with a positive main diagonal. Since [�CDxf(�x; �t)]

T = [�Dxf(�x; �t)]
TCT ; it follows

that [�CDxf(�x; �t)] is a B�matrix if �Dxf(�x; �t) is symmetric, or if [�Dxf(�x; �t)]
T is

also a B�matrix and ci = �c is constant for all i:

Theorem 3 (Uniqueness) Consider the system of equations (1) and �x �t 2 T:

1. Let X be an open (closed) rectangle. If Dxf(x; �t) or [Dxf(x; �t)]
T is an invertible

B0(B)�matrix for all x 2 X; then there is at most one equilibrium �x:

2. Let M � Rn be the closed n�dimensional unit disk.13 Let X be an open set

containing M: Let f : X � T ! Rn be smooth and such that for each �x 2 E,
where

E = f�x 2M jf(�x; �t) = 0g

is the set of equilibrium points in M , Dxf(�x; �t) is an invertible B0�matrix.
Assume f points outward on the boundary of M . Then there is exactly one

equilibrium.

13This disk is de�ned as Dn =
�
x 2 Rnj

Pn
i x

2
i � 1

	
:
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Proof. (1) If Dxf(x; �t) or [Dxf(x; �t)]
T is an invertible B0(B)�matrix for all x 2 X;

then Dxf(x; �t) is a P0(P )�matrix (with detDxf(x; �t) > 0 in the case of a P0-matrix)

by Lemma 3. Thus, f : X � T ! Rn is globally univalent by Theorems 4 and 4w in
Gale and Nikaido (1965).

(2) The set E is a �nite set since E is compact (it is a closed subset of the compact
space M) and discrete (f is one-to-one in a neighborhood of each �x 2 E by the IFT).
Then the zeros of M are isolated, so the Poincaré-Hopf Theorem implies that the

index sum is equal to the Euler characteristic of the unit disk, which is +1: This

establishes existence. Since det(Dxf(�x; �t)) > 0 at each �x 2 E , it follows that the
index of f at each �x 2 E is +1; and this establishes uniqueness.

Remark 1 The assumption that f �points outward� on the boundary of M means

that for any x on the boundary of M; there exists a sequence "i # 0 such that x +
"if(x; �t) =2M for i = 1; 2; 3::::

Remark 2 The second part of Theorem 3 relies on topological properties, so it applies
as long as X is open and M is replaced everywhere with a set M 0 � X which is

di¤eomorphic to the closed unit disk.

3.1 The Role of Heterogeneity

This section illustrates various aspects of the comparative statics result. A heuristic

discussion gives intuition as to how ill-behaved comparative statics may arise in the

presence of heterogeneous interaction terms; an analytic example illustrates how the

mean positive dominance condition captures the trade-o¤ between heterogeneity and

magnitude while also demonstrating the role played by the rows and columns of the

inverse of the Jacobian; and a formal result makes precise how the interaction terms

can be larger in magnitude when there is less heterogeneity while still retaining the

mean positive dominance property.

To begin heuristically, consider a three equation system, f = (f1; f2; f3). The

normalized Jacobian,

�Dxf(x; t) =

264 1 f12=f11 f13=f11

f21=f22 1 f23=f22

f31=f33 f32=f33 1

375 ;
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(1,0)

(0,1)

(0,1)

(1,0)

Possibly illbehaved

Wellbehaved

(1,1)

fij/fii

Possibly illbehaved

Possibly illbehaved

fik/fii

Figure 1: The mean positive dominance condition for row i of �Dfx(x; t) when n = 3:

is a B0�matrix if, for each row i = 1; 2; 3;

1 + fij=fii + fik=fii � max f0; 3fij=fii; 3fik=fiig for i 6= j 6= k:

These conditions are illustrated for a single row i by the triangle in Figure 1 with

vertices at (0; 1); (1; 0); and (�1;�1): If there is at least one row where the interaction
terms are outside of this set then the normalized Jacobian is not a B�matrix, and
hence comparative statics may be ill-behaved.

Recalling the discussion in the introduction, ill-behaved comparative statics seem

plausible when the interaction e¤ect is large or if there is heterogeneity in the inter-

action terms. The intuition behind the size of negative interaction e¤ects is obvious,

so let me focus on the role of heterogeneity.

To use a congestion goods example, consider a recreational activity like downhill

skiing or sur�ng. In each setting, the location (a ski resort or wave) is �xed in

the short run. Assume the marginal utility of the activity for any skier or surfer

is decreasing with congestion.14 Additional participants means one is more likely

14We can allow for positive externalities from companions as long as some strangers generate
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to be in a collision, to have more di¢ culty skiing a clean run or catching a good

wave, and the interval between runs or rides is longer because of congestion at the

lift or line-up. However, skilled participants may generate smaller externalities since

these participants are more knowledgeable of etiquette and less likely to interfere

with one�s enjoyment of the activity. If willingness to pay for the activity is positively

related with skill, then skilled participants may be willing to pay more to be among

a greater quantity of skilled participants as opposed to a lesser quantity of unskilled

participants.15 Thus, a ski resort may be able to charge a higher price and attract

more skiers if it can select for more highly skilled skiers. This may explain why resorts

with more di¢ cult trails can seem higher priced and more crowded than equally sized,

nearby resorts with easier trails.16

The following analytic example illustrates the role of heterogeneity, the role of

inverse row and column sums, and the role of mean positive dominance in partial

e¤ects for individual level comparative statics.

Example 1 Consider a market for a social good with three consumers. As in

equation (4) the system of demand functions is

f(x; p) � x� g(x; p) = 0:

Suppose that at equilibrium the Jacobian, which is identical to the normalized Jaco-

bian in this case, is given by

Dxf(�x; �p) =

264 1 0 0

a 1 0

b c 1

375 :
with a < 0; b > 0; and c > 0: Consumer 10s demand is not in�uenced by others�

consumption. Consumer 20s demand is increasing in consumer 10s consumption17 but

negative externalities. This case would be situated in the upper left or lower right quadrants of
Figure 1. The pure congestion case is represented in the lower left quadrant.
15In this example, system f is a demand system and the interaction terms represent an individual�s

marginal demand response to a one unit increase in other�s consumption of the good.
16This example does not apply well to all congestion situations. Probably the most reasonable

assumption for tra¢ c congestion is anonymous e¤ects since in the vast majority of cases each addi-
tional vehicle creates same negative externality. In this case the demand curve is downward sloping.
That being said, it may be possible for toll operators to select for better drivers, and consequently
face a less elastic demand curve, by selling passes only to those who have good driving records.
17Although it may seem counterintuitive, it follows from equation (3) that interaction terms have
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independent of consumer 30s consumption, and consumer 30s demand is decreasing in

both consumer 1 and consumer 20s consumption.

Assume that the partial price e¤ect for each consumer i is nonpositive, @gi
@p
� 0

for i = 1; 2; 3: Under what conditions is market demand downward sloping? What

about individual demand?

For the reader�s convenience, note that

Dx(�p) = [Dxf(�x; �p)]
�1 (�Dpf(�x; �p)) =

264 1 0 0

�a 1 0

ac� b �c 1

375
264

@g1
@p
@g2
@p
@g3
@p

375 :
The slope of market demand is

d��

dp
=
X dxi

dp
=
@g1
@p

(1� a� b+ ac) + @g2
@p

(1� c) + @g3
@p
; (9)

where the coe¢ cient on the jth element of �Dpf(�x; �p) is the jth column sum of

[Dxf(�x; �p)]
�1:

Focus on the �rst term of expression (9). If consumer 1 decreases consump-

tion by one unit, consumer 2 decreases consumption by �a units while consumer
3 increases consumption by b units. Moreover, consumer 2�s decrease in consump-

tion causes consumer 3 to decrease consumption by an additional �ac units. Thus,
@g1
@p
(1� a� b+ ac) represents the contribution of consumer 1�s partial e¤ect to the

slope of market demand after other consumers fully respond to his change in con-

sumption. The intuition behind the other terms of (9) is analogous.

The slope of market demand clearly depends on the size of the interaction e¤ects

of consumers 1 and 2 on consumer 3, but it also depends on their variation. To see

this, suppose a = �0:5 and b = c = 0:8: In this case Dxf(�x; �p) is a B�matrix and
its �rst inverse column sum is 0.3. But if b and c change to 1.6 and 0, respectively,

then Dxf(�x; �p) is no longer a B�matrix18 and its �rst inverse column sum is -0.1,

even though the cumulative interaction e¤ect b+ c = 1:6 remains constant.

Note that since the diagonal dominance condition depends only on the absolute

row sums, it is unable to distinguish between these two cases. Clearly, the Jaco-

a positive in�uence on the total e¤ect if �fij=fii � 0 and a negative in�uence if �fij=fii � 0:
18In both cases, the row sum of the third row is 2.6. But the largest positive o¤-diagonal term in

the �rst case is 0.8 while in the second it is 1.6. Since n = 3; we have 2:6 > 3�0:8 but 2:6 < 3�1:6:
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bian is not diagonally dominant in either case. Moreover, the demand system is not

monotone, so one is unable to apply the results from the MCS literature, either.

Turning to the slope of individual demand, note that

dg3
dp

=
@g1
@p

(ac� b) + @g2
@p

(�c) + @g3
@p
: (10)

When the price increases, the partial e¤ect on consumer 1�s consumption a¤ects

consumer 3�s consumption directly (�b) and indirectly through its e¤ect on consumer
2�s consumption (ac): Similarly, the change in consumer 2�s consumption a¤ects

consumer 3�s consumption directly (�c): In principle, there could also be an indirect
e¤ect through consumer 1, but since f12 = 0; consumer 1�s demand is unresponsive to

changes in consumer 2�s consumption. Finally, a change in consumer 3�s consumption

could indirectly a¤ect his own consumption through its e¤ect on others, but this

requires feedback e¤ects and the parametric assumptions rule this out.

As with the slope of market demand, limiting the size and heterogeneity of in-

teraction e¤ects is important to ensure that individual demand is downward sloping:

However, equation (10) indicates that we also need a restriction on the size and hetero-

geneity of other consumers�partial responses relative to consumer 3�s partial response.

This explains why Theorem 1 imposes the mean positive dominance condition on the

vector of partial e¤ects.

Finally, observe the slope of market demand depends on how a change in own

consumption a¤ects others� consumption, but the slope of individual demand de-

pends on how own consumption is a¤ected by changes in other�s consumption. The

o¤-diagonal row entries of the normalized Jacobian capture the former force, while

the o¤-diagonal column entries capture the latter. This explains why the aggregate

comparative statics results in part 1 of Theorem 1 places a mean positive dominance

restriction on the rows of the matrix while the individual level results in part 2 places

the same restriction on its columns. �

Turning to formal results, the mean positive dominance condition is satis�ed if

the �spread�between the largest and smallest interaction terms of a row is bounded.

Moreover, this bound must be made smaller as the interaction terms become larger.
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To see this, de�ne for each row i = 1; :::; n;

f+i = max f0;�fij=fii j j 6= ig and
f�i = min f0;�fij=fii j j 6= ig

as the largest positive and smallest negative interaction term, respectively. The mul-

tiplicity of f�i given i, denoted by ri, is the number of interaction terms in the ith

row equal to f�i ; where we de�ne ri = 0 if there are no strictly negative interaction

terms. Then we have the following result.

Proposition 1 Let n � 2: Suppose there are 0 � ki � n � 1 strictly positive inter-
action terms in row i: Then the normalized Jacobian �Dxf(x; t) is a B0(B)�matrix
if, for all i = 1; :::; n;

f�i � (>)�
1

n� ri
+

ki
n� ri

f+i : (11)

Proof. For a given i; let �i 2 f1; :::; ng ni be the set of indices j (excluding i)
such that � fii

fij
> 0 is a strictly positive interaction term, and let �ci 2 f1; :::; ng ni

be its complement. Then 1 +
P

j2�i[�ci
fij
fii
= 1 �

P
j2�i

�
�fij
fii

�
�
P

j2�ci

�
�fij
fii

�
�

1�kif+i �rif�i : Thus, the (strict) row mean positive dominance condition is satis�ed
when, for all i = 1; :::; n;

1� kif+i � rif�i � (>)� nf�i :

Rearrange this inequality to get (11).

Inequality (11) illustrates the trade-o¤ between heterogeneity and magnitude in

several ways. To begin, assume there no strictly positive interaction terms (ki = 0;

f+i = 0) and interaction is anonymous in row i in the sense that �fij
fii
= �fik

fii
for

all j 6= k 6= i: Then ri = n � 1 and the right hand side of inequality (11) is
�1: If one increases heterogeneity by allowing for nonanonymous interaction terms,
then this lower bound increases to � 1

n�ri , which is decreasing in ri: If one increases

heterogeneity yet again by allowing for some strictly positive interaction terms (ki >

0), then the lower bound increases again given ri: Finally note that if all interactions

are nonnegative (ki = n � 1; ri = 0; f�i = 0); then inequality (11) reads f+i < 1
n�1 :

These observations are in accord with the n = 3 case case presented in Figure 1.

Proposition 1 also makes it easy to see that the results in this paper generalize

Dixit (1986), since in that paper the o¤-diagonals of the normalized Jacobian are
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assumed identical by rows (see equation 39-ii in Dixit). In this context, diagonal

dominance requires the absolute value of each o¤-diagonal term to be less than 1
n�1 :

Inequality (11) delivers precisely the same bound for positive interaction e¤ects and

the much weaker bound of�1 for negative interaction e¤ects. Thus, part 1 of Theorem
1 provides the same results in Dixit19 under weaker conditions.20 The reason we

are able to generalize Dixit is that, in contrast to the B�matrix property, diagonal
dominance fails to take advantage of the limit on heterogeneity imposed by assuming

interaction e¤ects are identical by rows.

4 Applications

In this section I apply the results of the paper to optimization problems, di¤erentiable

games, and the smooth competitive exchange model. These applications illustrate

that it is simple to check whether the Jacobian is a B�matrix, and that requiring
the Jacobian to be a B�matrix results in economically meaningful restrictions. The
approach also simpli�es the analysis in some cases and provides new insights in others.

4.1 Optimization Problems

Consider the parameterized problem

Maximize F (x; t) subject to x 2 X; (12)

where F : X � T ! R is twice continuously di¤erentiable, X � Rn; and T � R:
To apply the results of this paper, let f(x; t) � rF (x; t) be the gradient of F and

observe that Dxf(x; t) is the Hessian of F: The following observations and de�nitions

are then natural.

Lemma 5 Fix t 2 T: The C2 function F : Rn ! R is (strictly) convex at x if

Dxf(x; t) is a B0(B)�matrix. The C2 function F : Rn ! R is (strictly) concave at
x if �Dxf(x; t) is a B0(B)�matrix.
19See the discussion after equation (41-ii) in Dixit (1986).
20In an e¤ort to place meaningful restrictions on comparative statics, Dixit (1986) constrains

his analysis to equilibria which are stable under tâtonnement dynamics. See the application to
aggregative games below for more on the relationship between comparative statics and stability in
this environment.
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Proof. This follows directly from the facts that a symmetric B�matrix is positive
de�nite, and that a symmetric B0�matrix is positive semide�nite (Lemma 3).

De�nition 1 The C2 function F : Rn ! R is (strictly) B�convex if Dxf(x; t) is a

B0(B)�matrix. The C2 function F : Rn ! R is (strictly) B�concave if �Dxf(x; t)

is a B0(B)�matrix.

Recall that F (x; t) has increasing di¤erences in (x; t) i¤ @2F
@xi@t

� 0 for all i = 1; :::; n;
or, equivalently, i¤Dtf(x; t) � 0: I can now state the main result for unconstrained
optimization problems.

Proposition 2 Let F : X � T ! R be C2; where T � R and X � Rn are open
sets. Given �t; let �x = x(�t) = argmaxx2X F (x; �t) be interior and unique. Suppose

that F (�x; �t) is B�concave and detDxf(�x; �t) 6= 0:

1. The equilibrium aggregate H(��) is nondecreasing in t whenever F has increasing

di¤erences in (�x; �t):

2. �xi is nondecreasing in t whenever Dtf(�x; �t) is mean positive dominant in element

i: If F is strictly B�concave at (�x; �t) and Dtf(�x; �t) is strictly mean positive

dominant in element i; then �xi is strictly increasing in t:

Proof. A necessary condition for a local maximum is f(�x; �t) = 0: Since F is

B�concave, �Dxf(x; t) is a B�matrix. By symmetry of the Hessian, [�Dxf(x; t)]
T

is a B�matrix, too. The result follows from Theorem 1 applied to equation (2).

Proposition 2 facilitates comparison with the classic results in the MCS literature.

It is well-known from this literature that the highest and lowest element from the set of

solutions argmaxx2X F (x; t) is nondecreasing in t if and only if F is supermodular21

in x and has increasing di¤erences in (x; t): Proposition 2 instead addresses the

comparative statics of the aggregate and individual components of the solution vector

when F is B�concave, but may not be supermodular in x and may not necessarily
have increasing di¤erences in (x; t): In other words, Proposition 2 applies in non-

monotone environments.
21Recall that F (x; t) is supermodular in x i¤fij � 0 for all j 6= i and all i = 1; :::; n; or, equivalently,

i¤ the o¤ diagonals of the Hessian Dxf(x; t) are nonnegative.
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4.1.1 Platform Monopoly

The results in Proposition 2 can be used to generalize the comparative statics results

in Rochet and Tirole�s (2003) seminal study of the two-sided platform monopoly

to allow for multiple sides and more general volume functions. A platform �rm

facilitates interactions between third parties like buyers and sellers. The credit card

and game console industries are examples.

For a multi-sided monopoly, the volume of transactions is given byQ(p); where p =

(p1; :::; pn) is the vector of prices that the platform �rm charges side i per transaction.

The monopolist�s optimization problem is

max
p
�(p; c; t) =

 
nX
i

pi � c
!
Q(p; t);

where c is the cost per transaction to the �rm and t is a volume shift parameter.22

In the Rochet and Tirole (RT ) two-sided version of this problem the sides are

buyers (B) and sellers (S). The volume is given by

Q(pB; pS; t) = D
B(pB; t)D

S(pS; t) (13)

where the quasi-demand functions Di(pi; t) = Pr(bi � pi; t) for i = B; S are the

proportion of buyers (respectively, sellers) for whom the gross surplus bi is higher

than the price pi:

RT analyze the comparative statics of marquee and captive buyers. Marquee

buyers are represented by a small uniform shift in sellers�surpluses so that

DS(pS; t) = D
S(pS � t):

Captive buyers have perfectly inelastic demand for the platform, perhaps because

they are tied by long-term contracts, so the buyers�quasi-demand function is

DB(pB; t) = D
B(pB) + t:

RT show that if the quasi-demand functions are log concave, the seller price pS
22This version of the pro�t function can also accommodate membership fees; see Rochet and Tirole

(2006).
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increases when there are marquee buyers while the buyer price pB increases when

there are some captive buyers. It also follows from their analysis that the total price

total price per transaction collected by the monopolist, pB + pS; increases with both

captive and marquee buyers.

These �ndings are limited by the fact that the buyer and seller quasi-demand

functions are multiplicatively separable and independent of the other�s price. The

next result demonstrates that Proposition 2 can be used to generalize the RT log

concavity condition to a multi-sided model with a general volume function. I assume
@2�
@pi@pj

� 0 for some j 6= i for two reasons: (1) if @2�
@pi@pj

� 0 for all j 6= i then the

pro�t function is supermodular and the results from the MCS literature apply, and

(2) @2�
@pi@pj

� 0 is probably the empirically relevant case.

Proposition 3 Given �c and �t; let �p = argmaxp�0 �(p; �c; �t) be unique and strictly

positive. At the maximizer �p; assume, for all i = 1; :::; n; that @Q
@pi
< 0; @2�

@pi@pj
� 0 for

some j 6= i; and 1
n

�
@2Q
@p2i

+
P

k 6=i
@2Q
@pk@pi

�
� @2Q

@pj@pi
for all j 6= i:

1. Then the total price per transaction,
P
pi; increases with t whenever �(�p; �c; �t)

has increasing di¤erences in (p; t).

2. If, in addition, @2�
@pi@t

> 0 and @2�
@pj@t

= 0 for all j 6= i; then we may also con-

clude that pi increases with t: More generally, pi increases with t whenever

Dtr�(�p; �c; �t) is mean positive dominant in element i:

The key condition in Proposition 3 is that, for each side i; 1
n

�
@2Q
@p2i

+
P

k 6=i
@2Q
@pk@pi

�
�

@2Q
@pj@pi

for j 6= i: If we think of @Q
@pj
as the side-j marginal volume, this condition means

that the average e¤ect on side-j marginal volume of an increase in the price for side-i

is less than its e¤ect on any particular side k di¤erent from i: Roughly, changing the

price on one side of the market does not have too dramatic or heterogeneous of an

e¤ect on the pricing incentives that the monopoly faces in other sides of the market.

It turns out that the RT log concavity conditions are a special case of the condi-

tions provided in Proposition 3.

Corollary 1 Suppose n = 2 and the volume function is the RT volume function given
by (13). Evaluating the expressions below at the maximizer �p we have

1. @2Q
@p2i

� @2Q
@pi@pj

for i; j 2 fS;Bg i 6= j if and only if DB(pB; t) and DS(pS; t) are

log concave,
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2. @2�i
@pi@pj

� 0 for i; j 2 fS;Bg i 6= j; and

3. with captive buyers we have @2�
@pB@t

> 0 and @2�
@pB@t

= 0; with marque buyers, @
2�

@pS@t
�

0 and @2�
@pB@t

= 0 if DS(pS; t) is log concave.

4.1.2 The Consumer Problem

Theorem 1 can also be applied to the comparative statics of constrained optimization

problems like the classic utility maximization problem. Assuming Walras�Law, then

given an n�vector of prices p; income m > 0; and C2 utility u : Rn+ ! R; the
consumer solves

max
x
u(x) s.t.

X
i

pixi = m: (14)

Our interest is in the conditions on utility under which all goods are normal. This

question can be addressed by applying the tools in this paper to the familiar system

of �rst order conditions:

ui(�x)

pi
= � for i = 1; :::; n; andX

i

pi�xi = m:

Totally di¤erentiating the �rst n �rst order conditions with respect tom, denoting

the matrix [U(x)=p] = (uij=pi) and the column vectors dx = (dx1
dm
; :::; dxn

dm
); d� =�

d�
dm
; :::; d�

dm

�
; we have

[U(�x)=p]dx = d�: (15)

Given d�; this system has a unique solution whenever the Hessian of u at �x; denoted

U(�x) = (uij(�x)); is nonsingular. If, in addition, pTU�1p � 0 for all p; it follows that
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d� < 0 for all p.23 So to apply the results of the paper, rewrite (15) as

[�U(�x)=p]dx = �d�

Since the vector �d� is positive and uniform it follows from Theorem 1 that all goods
are normal if [�U(�x)=p]T is mean positive dominant. This requires, for all goods

i = 1; :::; n;

1

n

nX
k=1

uki(�x)

pk
� min

�
0;
uki(�x)

pk
jk 6= i

�
: (16)

The term uji(�x)

pj
is the change in the marginal utility per dollar spent on good

j when the consumption of good i increases by one. Thus, the interpretation of

condition (16) is that the average e¤ect on the marginal utility per dollar spent on

each good of an increase in consumption of good i is nonpositive and no greater than

the e¤ect on the marginal utility per dollar spent on any particular good j di¤erent

from i:

A di¤erent interpretation is available which involves only the utility function.

Dropping the dependence on �x and making use of the fact that ui
uj
= pi

pj
at a maximizer,

rewrite these conditions as, for i = 1; :::n;

1

n

nX
k=1

uki(�x)

uk
� min

�
0;
uki
uk
jk 6= i

�
: (17)

The term uji
uj
is the percentage change in the marginal utility of good j caused by a

unit increase in the consumption of good i: Then condition (17) states that for a unit

increase in good i; the average percentage change in the marginal utility across all

goods should not be positive and should be no greater than the percentage change in

23From the �rst order conditions and the IFT we have�
U �p
�pT 0

� �
dx
d�
dm

�
=

�
0
�1

�
:

Denoting H =

�
U �p
�pT 0

�
, applying Cramer�s rule, and using the Laplacian expansion to evaluate

the numerator, we have d�
dm = � detU

detH : Since U is nonsingular it follows that d�
dm 6= 0: Using the

Schur complement method to calculate the determinant, and noting that the Schur complement of
H with respect to U is H=U=�pTU�1p, we have detH =detU detH=U = �pTU�1pdetU: Hence,
d�
dm = (pTU�1p)�1.
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the marginal utility of any particular good di¤erent from i: Note that this interpre-

tation is invariant under linear transformations of utility. The following proposition

o¤ers a formal statement of these results.

Proposition 4 Consider the utility maximization problem (14) with prices p >> 0

and income m > 0: Assume Walras� Law is satis�ed, there is a unique (global)

maximizer �x >> 0; u is C2; and U (�x) is nonsingular. If condition (17) holds at �x

for i = 1; :::; n; then all good are normal, that is, d�xi
dm
� 0 for i = 1; :::; n:

Proof. Under condition (17) and the nonsingularity of U(�x), Theorem 1 implies

dx R 0 as d� Q 0: But dx < 0 contradicts Walras�Law, so it follows that d� � 0:

The conditions of Proposition (4) imply that pTU�1p � 0 at �x since d�
dm

=

(pTU�1p)�1 (see footnote 23). Note that this inequality is also satis�ed when u

is concave.24

Chipman (1977) and Quah (2007) both assume that utility satis�es some version

of concavity and that all goods are complements to ensure that all goods are normal.

When utility is C2; complementarity means uij � 0 for all i 6= j: This assumption
implies that the incentive to consume a good increases with the consumption of every

other good.

Concavity in these paper plays an important role because of the constraint. To

see this, imagine there are three goods with strong complementarities between goods

2 and 3 but none between good 1 and the other two. When income increases, the

�partial�incentive to consume all goods may increase (in the sense that uii < 0 for

all i), but it may be optimal for the consumer to reduce consumption of good 1 to

take advantage of the strong complementarities between goods 2 and 3. Concavity

places restrictions on the cross partials which rule out this scenario. Note that this

intuition suggests that concavity is not necessary in the n = 2 case with complements,

a fact which was proven in Amir (2005).

In contrast to the complementarity assumption in Chipman (1977) and Quah

(2007), condition (17) allows for some goods (possibly all) to be substitutes, or uij < 0

for some i 6= j. In this paper and theirs, when a constraint is present it seems that
24Recall that concavity requires U to be negative semide�nite for all x; or zTUz � 0 for all

x; z 2 Rn: Thus, at values of x where U is invertible, all the eignevalues of U are strictly negative.
The eigenvalues of U�1 are the inverses of the eigenvalues of U; so U�1 is negative de�nite at values
of x (including �x) where U is invertible. This implies pTU�1p < 0:
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the important provision driving normality is that the cross e¤ects on marginal utility

are limited. To wit, note that both the conditions provided here and in Chipman

(1977) and Quah (2007) are satis�ed if preferences are strongly separable so that they

may be represented by an additively separable utility function, in which case uij = 0

for all i 6= j.

4.2 Games With Di¤erentiable Payo¤s

Consider a parameterized non-cooperative game �t = ((�i; Xi)i2N ; t) with a �nite

set of players N = f1; :::; ng; one-dimensional convex strategy sets Xi � R; and C2

strictly quasiconcave payo¤ functions �i : X � T ! R: An equilibrium is de�ned

in the usual way: �x(t) = (�x1(t); :::; �xn(t)) is a Nash equilibrium if, for each player i;

�xi(t) 2 argmax
xi2X

�i(xi; �x�i; t):

Given the strategy pro�le of the other players, a necessary condition for �xi to be

a maximizer is
@�i (�x)

@xi
� 0 with equality if �xi 2 int(Xi):

And for �xi 2 int (Xi) ; the second order necessary condition is
@2�i(�x)

@x2i
< 0 since strict

quasiconcavity implies �xi is unique.

The subsequent analysis can accommodate equilibria where �xi 2 bdy(Xi), but for

the sake of brevity concentrate on interior equilibria. De�ne the function F (x; t) �
�(x; t) = (�1(x; t); :::; �n(x; t)). Then the gradient of F is f(x; t) = r�(x; t); 25 and
at any interior equilibrium �x we have f(�x; �t) = 0: The Jacobian of F is then the

matrix of second derivatives of the pro�t functions for each player:

Dxf(x; t) =

2666664
@2�1
@x21

@2�1
@x1@x2

� � � @2�1
@x1@xn

@2�2
@x2@x1

@2�2
@x22

@2�2
@x2@xn

...
. . .

...
@2�n
@xn@x1

@2�n
@xn@x2

� � � @2�n
@x2n

3777775 ;

Note that Dxf(x; t) is not mean positive dominant since it has a negative diagonal.

25Rosen (1965) calls this the pseudogradient of the game.
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However, �Dxf(x; t) is mean positive dominant if and only if

1

n

nX
j=1

@2�i
@xi@xj

� min
�
0;

@2�i
@xi@xj

j j 6= i
�
for all i: (18)

The interpretation is that the average e¤ect on player i0s marginal payo¤ of an equal

increase in each player�s strategy is nonpositive and less than the e¤ect of an increase

in any single player j0s strategy on player i0s (j 6= i) marginal payo¤.
Alternatively, [�Dxf(x; t)]

T is mean positive dominant if and only if

1

n

nX
i=1

@2�i
@xi@xj

� min
�
0;

@2�i
@xi@xj

j j 6= i
�
for all j: (19)

Here the interpretation is that the average e¤ect on players�marginal payo¤ of an

increase in player j0s strategy is nonpositive and less than its e¤ect on the marginal

payo¤ of any particular player i0s (i 6= �j) marginal payo¤. Note that Dxf(x; t)

is not mean positive dominant since it has a strictly negative diagonal. Then the

following results are implied by Theorems 1-3 without additional proof.

Proposition 5 Consider the game �t and assume that an interior equilibrium �x

exists given �t:

1. If (18) holds at equilibrium, then the equilibrium aggregate, H (
P
�xi) ; is in-

creasing in t whenever payo¤s have increasing di¤erences in (x; t) : @2�i
@xi@t

� 0

for all i: Moreover, player i0s strategy �xi increases with t whenever the parame-

ter increases player i0s marginal payo¤ but has no direct e¤ect on other players:
@2�i
@xi@t

> 0 and @2�j
@xj@t

= 0 for j 6= i:

2. Suppose (19) holds at equilibrium. Then player i�s strategy, �xi; is increasing in

t whenever the e¤ect of an increase in t on marginal payo¤s is mean positive

dominant for player i; that is, whenever Dtr�(�x; �t) is mean positive dominant
in element i:

3. Suppose that either (a) (18) holds and Dxf(�x; �t) is symmetric at equilibrium

�x; or (b) (18) or (19) holds at equilbrium and there is a constant speed of ad-

justment. Then equilibrium is locally asymptotically stable under tâtonnement

dynamics.

29



4. Suppose (18) or (19) holds (with strict inequality) for all x 2 X and X is an

open (closed) rectangle. Then there is at most one equilibrium.

Proposition (5) can be used to generalize the Cournot oligopoly comparative stat-

ics results in Dixit (1986) and Corchón (1994). In the standard model, �rm i chooses

output xi � 0 to maximize pro�t � (xi; x�i; t) = xiP (X; t)�ci(xi; t), whereX =
P
xi:

Both papers identify conditions under which an idiosyncratic positive shock to �rm i

(e.g., a decrease in �rm i0s marginal cost) raises �rm i0s output and industry output.

Evaluated at equilibrium, the union of these conditions is that, for all i;

dP
dxi
� d2ci

dx2i
� �n

�
dP
dxi
+ �xi

d2P
dx2i

�
if dP
dxi
+ �xi

d2P
dx2i

� 0 and
dP
dxi
� d2ci

dx2i
� 0 if dP

dxi
+ �xi

d2P
dx2i

< 0:

The �rst of these conditions comes from Dixit and the second from Corchón.

Observing that @2�i
@xi@xj

= dP
dxi
+ xi

d2P
dxi
; these conditions apply when a �rm�s rivals are

strategic complements and, respectively, strategic substitutes. Since P (x)� dci
dxi
is the

markup over marginal cost, these conditions place restrictions on the impact of an

increase in own output on this markup. It is a straightforward exercise to check that

these are exactly the inequalities implied by condition (18), and hence the conclusion

of Part 1 of Proposition (5) applies.26

The main contribution of Proposition (5) to the literature on Cournot oligopoly

is that it generalizes the Dixit-Corchón conditions to the di¤erentiated products case

where �rms choose xi � 0 to maximize � (xi; x�i) = xiPi(x1; :::; xn; t)�ci(x1; :::; xn; t):
Notice that each �rm may have a di¤erent inverse demand function and �rms costs

can depend on others�output. This speci�cation is quite general and could serve as a

model of monopolistic competition, research and development, strategic relationships

between upstream and downstream �rms, among others.

26It is also worth pointing out that these conditions are precisely the conditions which one obtains
when taking the union of the stability conditions identi�ed by Hahn (1962) and Seade (1980).
In addition, under the condition that dP

dxi
� d2ci

dx2i
< 0; Kolstad and Mathieson (1987) show that

uniqueness obtains if and only if
nX
i=1

dP
dxi

+ xi
d2P
dxi

dP
dxi

� d2ci
dx2i

> �1:

This inequality is satis�ed when condition (18) is met.
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Recently, Acemoglu and Jensen (2013) exploit the aggregative structure of Cournot

oligopoly to weaken the Dixit-Corchón conditions for well-behaved comparative sta-

tics in the standard Cournot model. Their results have a limited application in the

di¤erentiated products case, however, since the approach requires the payo¤s and

marginal payo¤s of each �rm to depend on the output of other �rms in the same way

through the same aggregator function.

4.3 General Equilibrium

Following the textbook treatment (Chapter 17 of Mas-Colell, Whinston, and Green,

1995), consider a competitive exchange economy with L+1 goods and N consumers.

Let p = (p1; :::; pL+1) 2 RL+1+ be a vector of prices, let !k = (!k1; :::; !k(L+1)) 2 RL+1+

be consumer k0s endowment vector, and let yk : RL+1+ � RL+1+ ! RL+1+ be consumer

k0sWalrasian demand function and yk` : RL+1+ �RL+1+ ! R+ consumer k0s demand for
good `. Then consumer k0s excess demand for good ` is yk`(p; p �!k)�!k`; and the ag-
gregate excess demand for good ` is f`(p;!) =

PN
k=1 (yk`(p; p � !k)� !k`) : Given en-

dowments ! = (!1; :::; !N); aggregate excess demand is f(p;!) = (f1(p;!); :::; fL+1(p;!)):

Normalizing the price of good L+ 1 to one, we can represent the exchange economy

with the aggregate excess demand equations for the �rst L goods:

f̂(p;!) = (f̂1(p;!); :::; f̂L(p;!)):

Given endowments �!; an equilibrium price vector p(�!) is de�ned as the points where

f̂ vanishes, f̂(p(�!); �!) = 0:

If the excess demand functions satisfy the gross substitutes property,27 it is well-

known that the equilibrium is unique, stable under tâtonnement dynamics, and has

nice comparative statics properties. On the last point, one objective of comparative

statics analysis in general equilibrium theory is to �nd conditions under which the

relative price of good ` decreases when the endowment of the same good increases

for the kth consumer. The answer to this question is complicated by the fact that

a change in the endowment of one good directly impacts the excess demands for all

other goods through wealth e¤ects. But the desired relationship holds when excess

demand satis�es the gross substitutes property and consumer k�s excess demand for

27Recall that the gross substitutes property requires @f`
@pj

� 0 for all j = 1; :::; L + 1; j 6= `; and
` = 1; :::; L+ 1: In other words, the matrix Dpf(p;!) has nonnegative o¤-diagonal elements.
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all goods is normal.

Mean positive dominance in partial price e¤ects provides an alternative to the

gross substitutes property and allows for complements and inferior goods. Note that

compared to the notation in the rest of the paper, the endogenous vector is now p

instead of x, and the parameter is now !k` instead of t: We are thus interested in

signing elements of the vector

Dp(!) = �
h
Dpf̂(p;!)

i�1
D!f̂(p;!):

Then we have the following result.

Proposition 6 Assume f̂``(�p; �!) < 0 for all ` = 1; :::; L+ 1:

1. If �Dpf̂(�p; �!) is an invertible B0�matrix, and all non-numeraire goods are
normal (inferior) for consumer k; then the average price level is nondecreasing

(nonincreasing) in consumer k0s endowment of the numeraire: d
d!k(L+1)

�
1
L

PL
`=1 p` (!)

�
�

(�)0:

2. If [�Dpf̂(�p; �!)]
T is an invertible B0�matrix and �D!k` f̂(�p; �!) is mean positive

dominant in element ` then the relative price of good ` is nonincreasing in

consumer k0s endowment of good ` : d�p`
d!k`

� 0:

3. Suppose that the excess demand function for each good is positive as its price

goes to zero. If, for each equilibrium �p; �Dpf̂(�p; �!) or [�Dpf̂(�p; �!)]
T is a

B�matrix, then there is exactly one equilibrium.

4. If [�Dpf̂(�p; �!)]
T and �Dpf̂(�p; �!) are B�matrices, then equilibrium is locally

asymptotically stable under tâtonnement dynamics with a constant speed of ad-

justment: ci = c for all i:

Proof. (1) Let mk = p � !k be consumer k0s wealth and note that when the en-
dowment of the numeraire increases for the kth consumer, the typical element of the

vector D!f̂(�p; �!) = D!k(L+1) f̂(�p; �!) is
@yk(�p; �mk)
@mk

pL+1 =
@yk(�p; �mk)
@mk

; which is nonnegative

i¤ @yk(�p; �mk)
@mk

� 0: The result follows from Theorem 1.

(2) De�ne the change of variable t = �!`k: If [�Dpf̂(�p; �!)]
T is a B�matrix and

Dtf̂(�p; �!) = �D!k` f̂(�p; �!) is mean positive dominant in element `; then
dp`
dt
� 0 by

Theorem 1.
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(3) Without loss of generality we may normalize prices to be con�ned to the

price simplex as in Dierker (1972). The result then follows from Varian (1975) since

the determinant of a B�matrix is positive. Varian�s proof is a version of part 2 of
Theorem 3, and the desirability assumption ensures that �f points outward on the
boundary of the price simplex.

(4) This is a direct application of Theorem 2.

To interpret Proposition 6, note that when consumer k0s demand for non-numeraire

goods is normal, the partial e¤ect of an increase in consumer k0s endowment of the nu-

meraire causes his excess demand for the numeraire to fall and the excess demand for

all other goods to increase. Consequently, the partial e¤ect lowers the nominal price

of the numeraire and raises the nominal price of all other goods. On the other hand,

if the demand for all non-numeraire goods is inferior, by Walras�Law the demand for

the numeraire must increase by at least as much as the endowment increases. In this

case, the partial e¤ect of the endowment shock lowers the price of the other goods

and increases the price of the numeraire. Part 1 of Proposition 6 asserts that after

all the general equilibrium e¤ects are accounted for, the B�matrix property imposed
on �Dpf̂(�p; �!) ensures that the partial e¤ects are maintained on average. Of course,

any good can be chosen as the numeraire, so this result hold quite broadly.

The condition that �Dpf̂(�p; �!) is a B0�matrix makes exact the idea that the
demand for a good must be most responsive to changes in its own price compared

to changes in the price of other goods. Precisely, mean positive dominance requires

that, for all ` = 1; :::; L;

f̂`` � min
n
0; Lf̂`jjj 6= `

o
�

LX
j 6=`;j=1

f̂`j; (20)

In words, condition (20) says that the own partial price e¤ect, f̂`` < 0; must be

larger in magnitude (by the margin min
n
0; Lf̂`jjj 6= `

o
) than the cumulative partial

e¤ect of a change in the price of each of the other goods on the demand for good `,PL
j 6=`;j=1 f̂`j:

Part 2 of Proposition 6 requires careful interpretation. If the endowment of good

` increases for consumer k, choose some other good i 6= ` as the numeraire. The
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assumption that �D!k` f̂(�p; �!) is mean positive dominant in element ` reads
28

1� @yk`(�p; �mk)

@mk

p` � �L�+
LX

j 6=`;j=1

@ykj(�p; �mk)

@mk

p`; (21)

where � � min
n
0; @yk(�p; �mk)

@mk
p`jj 6= `

o
: The terms @ykj(�p; �mk)

@mk
p` represent the increase in

consumption of good j due to the fact that wealth increases by p` when the endowment

of good ` increases by one. Thus, the left hand side of inequality (??) is the increase in
the excess supply of good ` when prices remain constant. The sum

PL
j 6=`;j=1

@ykj(�p; �m)

@m
p`

is the cumulative change in the excess demand for goods j 6= `: Thus, inequality (??)
requires that the increase in the excess supply of good ` is larger (by the margin �L�)
than the cumulative change in the excess demand for other goods, holding prices

constant. This implies that the price of good ` decreases �signi�cantly�compared to

the change the prices of other non-numeraire goods.

Then the assumption that [�Dpf̂(�p; �!)]
T is a B0�matrix ensures that the price of

good ` decreases relative to the numeraire after all the general equilibrium e¤ects are

realized. This condition is analogous to requiring that �Dpf̂(�p; �!) is a B0�matrix,
except that it applies to the columns instead of the rows. This makes precise the idea

that if the price of a good ` changes, the strongest partial demand response must be

from the demand for good `. Note that part 2 of Proposition 6 implies only that that

price of good ` decreases relative to the numeraire; the stronger conclusion that the

price of good ` decreases relative to all other goods would require that the conditions

of part 2 apply independently of which good j 6= ` is chosen as the numeraire.

Unlike results which rely on the gross substitutes property, conditions (20) and

(??) allow for some inferior goods and some complements. On the other hand,

if the gross substitutes property is satis�ed then of course condition (20) is more

restrictive. The B�matrix property also delivers a strong uniqueness result, but the
stability conclusion is weaker than that obtained via the gross substitutes property.

A few additional comparative statics results exist for general equilibrium. Nach-

bar (2002) identi�es a way to normalize prices such that comparative statics are

well-behaved for a given pro�le of endowment changes and the associated consump-

tion changes. Proposition 6 is a more traditional comparative statics result in that,

28mk = p � !k is consumer k0s wealth.
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given a price normalization, it �nds observable conditions on the excess demand func-

tions under which an exogenous shock causes the endogenous variables to move in

the desired direction. Malinvaud (1972, end of Chapter 5.2) provides the desired

comparative statics result in a distribution economy under the assumption that the

law of demand holds. In contrast to an exchange economy in which income depends

on endowments, tough, a distribution economy takes income as �xed.

A di¤erent strand of the general equilibrium comparative statics literature focuses

on the refutability of general equilibrium theory under the rationality assumption.

Roughly speaking, the Sonnenschien-Mantel-Debreu theorem states that there ex-

ists an economy that can rationalize any observed set of prices, and hence general

equilibrium theory can not be refuted by data on prices alone. Brown and Matzkin

(1996) show, however, that if endowments and prices are observable, then the general

equilibrium model is refutable. Brown and Shannon (2000) demonstrate that, in

a smooth setting, given �nite data on prices, aggregate endowments, and incomes,

these data can be rationalized in the general equilibrium model if and only if they

can be rationalized in a general equilibrium model in which equilibrium is locally

unique, locally stable, and that comparative statics are locally well-behaved. One

interpretation of this result is that the smooth general equilibrium model is refutable

only under stronger assumptions. Proposition 6 provides such conditions.

5 Conclusion

This paper makes three key contributions. First, it illuminates the role played by the

heterogeneity of interaction terms in determining the behavior of an economic model,

speci�cally as it pertains to comparative statics, stability and uniqueness. Many exist-

ing comparative statics in the literature are made possible through assumptions which

limit heterogeneity. However, these assumptions are often considered primitives in

the models so it is not clear how heterogeneity a¤ects the results. The mean positive

dominance condition captures a trade-o¤ between heterogeneity and magnitude.

Second, this paper introduces the class of B� and B0�matrices to economics.
It is simple to check whether the Jacobian belongs to this class, and imposing this

structure on an economic model generates economically meaningful restrictions. Also,

this class of matrices possesses many attractive technical properties.

Third, Theorems 1 and 2 provide a novel statement, albeit a weak version, of
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Samuelson�s (1947) correspondence principle for multidimensional models that are not

necessarily monotone. While Samuelson focused on the duality between comparative

statics and stability, Theorems 1-3 suggest the presence of a triality which includes

uniqueness.

On a �nal note, understanding why unexpected outcomes occur is a particularly

important charge for our �eld. A focus on the conditions which generate well-behaved

models provides insight on this question as it identi�es necessary conditions for un-

expected outcomes. For example, this paper shows that if there are at least some

negative interaction e¤ects, and interaction e¤ects are su¢ ciently large or heteroge-

neous, then even at stable equilibria comparative statics may be ill-behaved.
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6 Appendix

Proof of Lemma 1

(1) Since y = A�1b we have for each i; yi =
Pn

j=1 bj�ij: It follows that

nX
i=1

yi =

nX
i=1

nX
j=1

bj�ij =

nX
j=1

 
nX
i=1

�ij

!
bj � 0;

where the last inequality is valid for all b � 0 i¤ A 2 NICS:
(2) This follows from the fact that yi =

Pn
j=1 bj�ij = bi�ii when b is positive only

in element i:

(3) In this case, bi = �b � 0 for all i; so yi =
Pn

j=1 bj�ij =
�b
�Pn

j=1 �ij

�
� 0; where

the last inequality is valid for all �b > 0 i¤ A 2 NIRS: �

Proof of Lemma 3

(1) This follows from the facts that aB�matrix has a strictly positive determinant,
the determinant is a continuous function of the matrix entries, and weak inequalities

are preserved in the limit.

(2) The proof of this claim is a slight modi�cation of the proof of Proposition 2.5

in Peña (2001). Consider the set of natural numbersM = f1; :::; ng ; let � be a subset
of M with k elements, and let �0 be the complement of � in M; �0 = Mn�. The
elements of � and �0 are understood to be arranged in increasing order. Denote by

A[�] any principal submatrix of A with elements (aij) with i; j 2 �:
First we establish that A[�] has nonnegative row sums. To this end, note that

aii �
P

h2H jaihj ; where H = fhj1 � h � n and aih < 0g : This follows from the fact

that rearranging (7) implies aii�a+i �
P

j 6=i(a
+
i �aij) and observing that aii � aii�a+i ;

a+i � aij � 0 for all i 6= j; and a+i � aij � jaijj if aij < 0:
To show that kaij �

P
s2� ais for all i 6= j 2 �; assume instead that for some

i 6= j 2 �; kaij >
P

s2� ais to derive a contradiction. Since ka
+
i � kaij for all i; it

follows that for some i;

na+i � ka+i +
X
r2�0

air >
X
s2�

ais +
X
r2�0

air =
nX
p=1

aip;
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which contradicts the assumption that A is a B0�matrix.
(3)-(4) These are straightforward corollaries of (2).

(5) From equation (7) it follows that if a+i = 0; then aii � 0: If a+i > 0; then sincePn
j=1 aij � aii + (n� 1)a+i ; equation (7) implies aii + (n� 1)a+i � na+i ; or aii � a+i :
(6)A+AT is a symmetricB(B0)�matrix by Lemma 2, so it is positive (semi)de�nite

from Peña (2001) and part (4). A is positive (semi)de�nite if and only if A + AT is

positive (semi)de�nite, and similarly for AT :

(7) Again, A is positive (semi)de�nite if and only ifA+AT is positive (semi)de�nite,

and similarly for AT :

(8) This follows from Proposition 2.3 and Theorem 4.3 in Peña (2001). In an

e¤ort to keep this paper reasonably self-contained, I will state the key parts of these

results here. Let A = (aik)1�i;k�n be a real matrix. De�ne, for each i = 1; :::; n;

r+i = max f0; aijjj 6= ig and c+i = max f0; aijji 6= jg :

Then de�ne, for each i = 1; :::; n;

�i = min

(
aii � r+i �

X
k 6=i

�
r+i � aik

�
; aii � c+i �

X
k 6=i

�
c+i � aki

�)
:

Letting � be an eigenvalue of A, the �rst part of Peña�s (2001) Theorem 4.3 implies

Re(�) � min f�1; :::; �ng :

Proposition 2.3 in Peña (2001) states that the real matrix A is a B�matrix if and
only if for all i = 1; :::; n;

aii � r+i �
X
k 6=i

�
r+i � aik

�
> 0:

It follows that AT is a B�matrix if and only if for all i = 1; :::; n;

aii � c+i �
X
k 6=i

�
c+i � aki

�
> 0:

Consequently, min f�1; :::; �ng > 0 if A and AT are B�matrices. �
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Proof of Proposition 3

The necessary �rst order conditions for a maximum are

@�

@pi
=
�X

p� c
� @Q
@pi

+Q = 0 for all i:

To apply Proposition 2, we need to show that the Hessian of �� is mean positive
dominant. The �rst order condtions imply that @Q

@p
� @Q

@pi
for all i at a maximum, so

the terms along the main diagonal of the Hessian of �� are �@2�
@p2i

= � (
P
p� c) @2Q

@p2i
�

2@Q
@p
: The o¤ diagonal terms are � @2�

@pi@pj
= � (

P
p� c) @2Q

@pi@pj
� 2@Q

@p
: The remainder

of the proof exploits the fact that @2�
@pi@pj

= @2�
@pj@pi

:

Since � @2�
@pi@pj

� 0 for some j 6= i; :the Hessian (of ��) is mean positive dominant
if, for i = 1; :::; n;

�X
p� c

� @2Q
@p2i

+
X
j 6=i

@2Q

@pj@pi

!
+ 2n

@Q

@p
� n

�X
p� c

� @2Q

@pj@pi
+ n2

@Q

@p
8j 6= i;

which simpli�es to @2Q
@p2i

+
P

j 6=i
@2Q
@pj@pi

� nmax
n

@2Q
@pj@pi

jj 6= i
o+
i
; as desired. We have

now shown that the pro�t function is B�concave under the conditions in Proposition
3, so Proposition 2 applies. �

Proof of Corollary 1

(1) Note that for i; j = fS;Bg and j 6= i;

@2Q

@p2i
=
@2Di

@p2i
Dj and

@2Q

@pi@pj
=
@Di

@pi

@Dj

@pj
:

The �rst order conditions are (
P
p� c) @Q

@pi
+ Q = 0 for all i which implies DiDj =

� (
P
p� c) @Di

@pi
Dj for i; j 2 fB; Sg and i 6= j: Thus, DS

@DS

@pS

= DB

@DB

@pB

in equilibrium. It

follows that @
2Q
@p2i

� @2Q
@pi@pj

for i 6= j 2 fB; Sg if and only if, for i 2 fB; Sg ;

@2Di

@p2i
Dj � @Di

@pi

@Dj

@pj
; or

@2Di

@p2i
Di �

�
@Di

@pi

�2
:
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This last condition is precisely log-concavity of the quasi-demand functions.

(2) @�
@pB@pS

= @DB

@pB
DS + DB @DS

@pS
+ (
P
p� c) @DB

@pB

@DS

@pS
= DB @DS

@pS
� 0; where the

second inequality follows from the �rst order conditions.

(3) With captive buyers, we have @2�
@pB@t

= DS > 0 and @2�
@pS@t

= (
P
p� c) @DS

@ps
+

DS = 0 by the �rst order condition, so we conclude that pB + pS and pB increase

with more captive buyers:

With marquee buyers, @2�
@pB@t

= �@DS(p�t)
@pS

�
DB(pB) + (

P
p� c) @DB

@pB

�
= 0 using

the �rst order conditions. Once again using the �rst order conditions and the as-

sumption that DS is log concave, we have

@2�

@pS@t
= �DB(pB)

 
@DS(p� t)

@pS
+

 
nX
i

pi � c
!
@2DS(p� t)

@p2S

!

= �DB(pB)

 
@DS(p� t)

@pS
� DS

@DS

@pS

@2DS(p� t)
@p2S

!
� 0:

Thus, pB + pS and pS increase with the addition of marquee buyers.29

29RT also show that the seller price decreases with more captive buyers while the buyer price
decreases with the prevalence of marquee buyers. In the two-sided case we can generate these
results via Cramer�s Rule under the additional condition that @2�

@pj@t
= 0:
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