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Abstract

Consider an economic model whose equilibrium can be represented as the
�xed point of a system of di¤erentiable equations. Using the theory ofB�matrices,
I show that comparative statics are well-behaved if the interactions between the
equations are not too large, and the negative interactions are not too varied.
When there are only positive interactions, for example when strategic comple-
ments prevail in a strategic setting, I prove a version of Samuleson�s (1947)
Correspondence Principle in that equilibrium is nondecreasing for any positive
parameter shock if and only if equilibrium is exponentially stable under dis-
crete time best reply dynamics. If there are only negative interactions, like
when strategic substitutes prevail in a game theoretic context, I use the theory
of inverse M�matrices to signi�cantly relax Dixit�s (1986) conditions under
which comparative statics are well-behaved. For every comparative statics
result I show that if the conditions apply globally then equilibrium is unique.
Applications are provided to di¤erentiated products Cournot oligopoly, market
demand with interdependent preferences, and games on �xed networks.
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1 Introduction

In many economic models, the equilibrium values of endogenous variables can be

characterized as the solution to a system of equations: Of paramount interest is the

equilibrium e¤ect on the endogenous variables of a change in an exogenous parameter.

Using recent results from linear algebra and the familiar Implicit Function Theorem

approach, I provide novel results and insights on this canonical problem.

While the results apply to any system of equations, the intuition can be best

understood in a game theoretic context where the system is interpreted as the set of

best response functions, one for each player. The total equilibrium e¤ect of a positive

shock on a player�s action can be decomposed into a partial e¤ect and an interactions

e¤ect. The partial e¤ect is the increase in the player�s action holding constant all

other player�s actions. The interactions e¤ect is the di¤erence between the total

e¤ect and partial e¤ect. If there are negative interaction e¤ects, meaning that there

is a player whose best response is decreasing in the action of some other player, then

the private e¤ect and interactions e¤ect may have opposite signs. Consequently, the

total e¤ect and private e¤ect may have opposite signs as well.

Comparative statics are �well-behaved,�meaning that the total e¤ect and private

e¤ect have the same sign, when interaction e¤ects are moderate and the negative

interaction e¤ects are not too varied. Speci�cally, if the column (row) means of the

Jacobian are positive and larger than each of its o¤-diagonal elements, I show that

its inverse has nonnegative row (column) sums. This is su¢ cient for well-behaved

comparative statics. The result builds o¤ of Carnicer, Goodman and Peña (1999)

who show that these matrices, termed B�matrices in Peña (2001), have a strictly
positive determinant. The class of B�matrices is distinct from diagonally dominant
matrices and appears to be new to the economics literature.

To put this result in context, Dixit (1986) studies comparative statics in a homoge-

neous products Cournot oligopoly with strategic substitutes. Demand depends only

on the sum of output, so interaction is anonymous. Dixit shows that comparative sta-

tics are well-behaved under a diagonal dominance condition, which with anonymous

interaction requires each of the o¤-diagonal terms in the (normalized) Jacobian to be

less than 1
n�1 : My result demonstrates that, for a wider class of parameter shocks,

well-behaved comparative statics arise under the same condition if either interaction

is anonymous or there are strategic substitutes.
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When strategic substitutes and anonymous interaction exist, I exploit the theory

of inverse M�matrices to show that Dixit�s condition can be relaxed to 1p
n�2 : I also

show that diagonal dominance is su¢ cient for well-behaved comparative statics with

(non-anonymous) strategic substitutes.

When strategic complements prevail, so that all interaction e¤ects are positive, ill-

behaved comparative statics are possible with large interaction e¤ects. However, in

accord with Samuelson�s (1947) Correspondence Principle, equilibrium is nondecreas-

ing for any positive shock if and only if equilibrium is exponentially stable. This is an

Implicit Function Theorem-based version of Echenique�s (2002) lattice-based result

in which he shows that if the equilibrium is not monotone increasing then equilib-

rium is unstable. I also show that equilibrium is unique if the spectral radius of the

normalized Jacobian is everywhere less than one.

More generally, for each result, if the conditions on the (normalized) Jacobian

which guarantee well-behaved comparative statics apply globally then equilibrium is

unique, if it exists. All but one of the comparative statics results involve conditions

under which the Jacobian is a B�matrix, an M�matrix, or an inverse M�matrix in
equilibrium. Since each of these classes is a type of P�matrix, Gale and Nikaido�s
(1965) global univalence result gives uniqueness if the Jacobian is everywhere a

B�matrix, an M�matrix, or an inverse M�matrix. The remaining comparative

statics result (Theorem 5) requires a norm of the Jacobian to be less than one at

equilibrium. If the norm is everywhere less than one, uniqueness follows from Lemma

3 in Christensen and Jung (2010).

A unifying principal which emerges from the analysis is that heterogeneity mat-

ters. Well-behaved comparative statics arise at stable equilibria when interaction

e¤ects are not too varied. But if there are at least some negative interaction e¤ects,

and interaction e¤ects are su¢ ciently heterogeneous, then even at stable equilibria

comparative statics may be ill-behaved. I provide plausible examples of this possi-

bility in the context of a di¤erentiated products Cournot oligopoly (Example 3) and

market demand with interdependent preferences (Section 7).

In fact, the application in Section 7 helps unify the analysis in Leibenstein (1950),

Rohlfs (1974) and Becker (1991) within a simple two-person model of market demand

with interdependent preferences. In another application of the results, I characterize

comparative statics in the network game with linear best replies studied in Bramoullé,

Kranton, and D�Amours (2014) in terms of a player�s degree.
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The analysis in this paper contains and extends the results in Dixit (1986).

Corchón (1994) extends Dixit by considering aggregative games where payo¤s de-

pend on other�s actions only through the sum. Acemoglu and Jensen (2013) consider

a more general class of aggregative games, but one restriction which remains is that

the interaction e¤ects of other players on own action must have the same sign. When

applied to their respective settings, my results are complementary to theirs. Like

this paper, Jinji (2014) considers a general interaction environment. Within the

context of oligopoly, Jinji derives conditions under which the equilibrium e¤ect of a

unit change in another player�s action has the same sign as the private e¤ect. In

addition to diagonal dominance, Jinji imposes a condition on certain minors of the

Jacobian which is di¢ cult to interpret.

In contrast, the linear conditions on the Jacobian in this paper are simple to check

and interpret, and they convey key intuition about the problem. If the system char-

acterizing equilibrium is derived from payo¤ maximization, then with some caveats

like interiority, the conditions on the Jacobian translate directly into conditions on

the second order derivatives of the objective function. Finally this paper additionally

contributes to the literature by linking comparative statics and uniqueness.

A recent strand of the comparative statics literature focuses on environments in

which the Implicit Function Theorem cannot be applied. Early contributions to

this literature include Topkis (1998), Vives (1990), and Milgrom and Roberts (1990)

who use lattice-based techniques to study monotonicity of equilibrium in games with

strategic complements. However, these results apply to only extremal equilibria and

the techniques do not extend to other types of strategic interaction. A few results

But see Roy and Sabarwal (2010) and Acemoglu and Jensen (2013) for some results

in games with strategic substitutes which do not require smoothness. Monaco and

Sabarwal (2015) also provide some results which require continuity but not di¤eren-

tiability.

One �nal point of distinction from the existing literature is that assumptions in this

paper are made directly on the equations of the equilibrium system. This makes the

results widely applicable. For example, they apply to reduced form macroeconomic

models as well as strategic environments with expected payo¤ maximizers.

In the next section I present the model. The main comparative statics result is

in Section 3. I characterize stability in Section 4. In Section 5 I study the rela-

tionship between comparative statics and stability, especially in the cases of strategic
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complements and strategic substitutes. The linear case is considered in Section 6,

and Section 7 is devoted to an extended application to demand with interdependent

preferences. Uniqueness results appear throughout. Section 8 concludes.

2 The Environment

Consider a system of n equations in n unknowns:

f 1 (x1; x2; :::; xn; t) = 0

f 2 (x1; x2; :::; xn; t) = 0 (1)
...

...

fn (x1; x2; :::; xn; t) = 0

where xi 2 Xi � R for all i are the endogenous variables and t 2 T � Rs is a vector
of exogenous parameters. For the sake of clarity and interpretation, the main body

of the paper assumes s = 1, but the results generalize to s �nite.

An equilibrium is a vector x� = (x�1; x
�
2; :::; x

�
n) that satis�es system (1). Since our

interest is in comparative statics, and existence theorems abound for such a system,

assume directly that an equilibrium exists. In addition assume

1. f = (f 1; f2; :::; fn) is continuously di¤erentiable at x�; and

2. det( ~A) 6= 0 at x�; where ~A is the Jacobian of f:

3. @f i

@xi
6= 0 for all i at x�.

The �rst two assumptions ensure that I can apply the Implicit Function Theorem.

The last assumption allows for a convenient normalization of ~A and is innocuous in

many applications.

Let H : R ! R be an increasing and di¤erentiable function, and let ��(t) �Pn
i=1 x

�
i (t). The main comparative statics results concern how the equilibrium ag-

gregate H(�� (t)) and the equilibrium x�(t) vary with t:

To �x ideas and to help with the exposition of the results, consider two economic

models whose equilibrium may be characterized by a system of equations like (1).

Demand for social goods. Suppose n � 2 consumers allocate income wi
between good X with price px and good Y with price py: Consumer i0s preferences are
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represented by the continuously di¤erentiable, strictly quasiconcave utility function

ui(xi; yi; x�i);where xi and yi are consumer i0s consumption levels of goods X and Y ;
while x�i = fx1; :::; xi�1; xi+1; :::; xng is the vector of others�consumption of good X :
In this sense good X is a social good while good Y is a private good.1

Consumers solvemaxxi;yi2Bi ui (xi; yi; x�i) ; where Bi= f(xi; yi) � 0 : pxi + pyyi � wig
is the set of a¤ordable consumption bundles. If demand can be solved explicitly, de-

note the unique solution to this problem as

x�i = f i (x�i; p; wi) and

y�i = hi (x�i; p; wi) ,

where f i and hi are consumer i0s demand functions for goods X and Y ; respectively,
given the price vector p = (px; py), wealth and the consumption of others. Note that

f i and hi are continuous at (p; wi) by the theorem of the maximum.

Focus on the market for the social good. Only pure strategy equilibria exist since

x�i is unique. Letting w = (w1; w2; :::; wn) ; an equilibrium demand system given

(p; w) is de�ned as

x� = f (x�; p;w) :

Since every individual�s demand is continuous and constrained to Bi; f is continuous
and maps a compact and convex set into itself. Therefore, Brouwer�s �xed point

theorem ensures an equilibrium exists.

Formally, in this setting the vector of parameters is t = (p; w): Of primary interest

is how the market demand for the social good, F (px) � � (px) =
Pn

i=1 f
i (x�; px)

varies with price px when demand is di¤erentiable at equilibrium and good X is not a

Gi¤en good: @f
i

@px
� 0 for all i: When is it possible for market demand to slope upwards

in a stable equilibrium? The existing literature on subject, discussed in Section 7,

has severely constrained how individual demand depends on others� consumption,

typically through the sum of others�consumption. The analysis herein constitutes a

substantial generalization.

Di¤erentiated Products Oligopoly. Following Singh and Vives (1984), the

inverse demand for �rm i in a di¤erentiated products oligopoly setting with n �rms

1To use alternative terminology, this is a model of interdependent preferences (e.g., Pollak, 1976).
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engaging in Cournot competition is

pi = �i (t)�
nX
j=1

bij (t)xj; for i = 1; :::; n;

where �i (t) > 0; bii (t) > 0; and xj is �rm j0s quantity. The interaction terms (bij)i6=j
may be negative or positive, depending on whether �rm j has a �business enhancing�

or �business stealing�e¤ect on �rm i: Let ci (xi; t) be �rm i0s convex cost function.

Dropping the dependence on t; each �rm�s pro�t maximizing quantity x�i solves

�i � 2biix�i �
X
j 6=i

bijxj �
dci (x

�
i )

dxi
= 0 for i = 1; :::; n: (2)

An equilibrium x� = (x�1; :::; x
�
n) simultaneously solves all n of these equations.

To provide an example of a linear version of system (1), note that if ci (xi) = cixi
for ci � 0 then �rm i0s pro�t maximizing quantity is

x�i =
�i � ci
2bii

�
X
j 6=i

bij
2bii

xj for i = 1; :::; n: (3)

3 Comparative Statics with Arbitrary Interactions

3.1 De�nitions and a Preliminary Result

Let f ij � @f i

@xj
. Then totally di¤erentiating system (1) at equilibrium gives

dx�i
dt

= �@f
i

@t

1

f ii
�
X
j 6=i

f ij
f ii

dx�j
dt
; i = 1; :::; n: (4)

In a strategic context, the total e¤ect (TE) of a parameter change on individual i0s

action, dx
�
i

dt
; can be decomposed into the private e¤ect (PE) and the interactions e¤ect

(IE): The private e¤ect is PE = �@f i

@t
1
f ii
, since this would be player i0s response to

a parameter change if x�i were held constant. The interaction terms
�
�f ij=f ii

�
j 6=i

describe how player i0s action changes in response to a one unit increase in player j0s

action. Thus, the interactions e¤ect for player i is simply IE = �
Pn

j=1;j 6=i
f ij
f ii

dx�j
dt
:

The e¤ect of a parameter change on the equilibrium aggregate H (��) is dH(��)
dt

=
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dH
d��

�Pn
i=1

dx�i
dt

�
:2

To observe the e¤ect on dx�i
dt
and dH(��)

dt
of various assumptions on the interaction

terms; write system (4) in matrix-vector form,266664
1 f 12 =f

1
1 � � � f 1n=f

1
1

f 21 =f
2
2 1 f 2n=f

2
2

...
. . .

...

fn1 =f
n
n fn2 =f

n
n � � � 1

377775
| {z }

A

266664
dx�1
dt
...

dx�n
dt

377775
| {z }

dt

=

266664
�@f1

@t
1
f11

...

�@fn

@t
1
fnn

377775
| {z }

:

@t

(5)

If A is invertible, the solution to system (5) is dt = A�1@t: Note that A = ~D ~A; where
~D is a diagonal matrix whose main diagonal is (1=f11 ; :::; 1=f

n
n ) : Clearly, det (A) 6= 0

i¤ det( ~A) 6= 0 since ~D 6= 0:
Comparative statics results depend on the type of private e¤ects created by a

parameter shock. Say that a parameter shock creates positive private e¤ects if @t � 0
with at least one element strictly positive, @t 6= 0.3 The vector of private e¤ects is

uniform if �@f i

@t
1
f ii
= �@fj

@t
1

fjj
for all i 6= j: The vector of private e¤ect is dominant for

player i if the sum of private e¤ects is positive and the private e¤ect for every player

other than i is less than the average:
Pn

i=1�
@f i

@t
1
f ii
> 0 and �@fj

@t
1

fjj
< 1

n

Pn
i=1�

@f i

@t
1
f ii

for all j 6= i: The vector of private e¤ects hits only player i if �@f i

@t
1
f ii
6= 0 but

�@fj

@t
1

fjj
= 0 for all j 6= i: The vector of private e¤ects misses player i if �@f i

@t
1
f ii
= 0

but �@fj

@t
1

fjj
6= 0 for some j:

Existing comparative statics results at the individual level assume the private

e¤ect hits only player i (e.g., Dixit 1986; Corchón, 1994; Acemoglu and Jensen,

2013). This is the �rst paper to provide results for the more general case where the

private e¤ect is dominant for player i: Results for uniform private e¤ects are also

novel.4

2To connect these ideas to the social interactions literature, say that the interactions e¤ect rein-
forces the private e¤ect if sgn(PE) = sgn(IE) 6= 0; the interactions e¤ect counteracts the private
e¤ect if sgn(PE) = �sgn(IE) 6= 0. The social multiplier is TEPE ; and this is greater than one if and
only if the interactions e¤ect has the same sign as the private e¤ect.

3I focus on positive private e¤ects throughout but analogous results are available for negative
private e¤ects.

4Acemoglu and Jensen�s (2013) concept of a �shock that hits the aggregator�can be consider a
special case of uniform private e¤ects. While not explicitly stated, Jinji�s (2014) results sign the
total e¤ect for uniform private e¤ects and e¤ects that hit only player i:
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I begin with some preliminary results which highlight the importance of the row

and column sums of A�1 to comparative statics results. In an abuse of notation, for

an invertible matrix B with inverse B�1 whose (i; j)th element is b�1ij ; call
Pn

i=1 b
�1
ij

the jth inverse column sum of B: Let NICS be the class of invertible matrices with
nonnegative inverse column sums. Similarly call

Pn
j=1 b

�1
ij the ith inverse row sum

of B: Let NIRS be the class of invertible matrices with nonnegative inverse row
sums.

Any proof not contained in the text appears in the Appendix. The notation

A (x�) indicates that the matrix A should be evaluated at x�:

Lemma 1 Suppose a parameter shock creates positive private e¤ects.

(a) x�i is nondecreasing if and only if the ith row of A
�1 (x�) contains only nonneg-

ative elements,

(b) If, in addition, private e¤ects are uniform, the equilibrium x� is nondecreasing

if and only if A (x�) 2 NIRS, and

(c) The equilibrium aggregate H(��) is nondecreasing if and only if A (x�) 2 NICS:

3.2 The Main Results

In this section I show that A 2 NICS if A is a B�matrix and A 2 NIRS if AT is
a B�matrix, where AT denotes the transpose of A: A B�matrix is a square matrix
whose row means are positive and larger than each of the o¤-diagonal terms of the

same row. Denote this classB: Precisely, the n � n matrix � = (�ij) is a B�matrix
if, for i = 1; :::; n;

nX
j=1

�ij > 0 and (6)

�ij <
1

n

nX
j=1

�ij; 8j 6= i: (7)

Carnicer, Goodman, and Peña (1999) show that matrices in this class have a strictly

positive determinant (see Corollary 4.5). The term �B�matrix�is introduced in Peña
(2001), but a more descriptive moniker may be row mean positive dominant matrices.

9



The result in Carnicer, Goodman, and Peña (1999) is stated forB-matrices but clearly

it extends to any matrix � whose transpose �T is a B�matrix since det(�) = det(�T ):

Theorem 1

(a) If A satis�es inequalities (6)-(7), then the equilibrium aggregate H(��) is non-

decreasing for any vector of positive private e¤ects. That is, A (x�) 2 B implies

A (x�) 2 NICS:

(b) If AT satis�es inequalities (6)-(7), then the following individual level compara-

tive statics hold.

i. x� is nondecreasing for uniform positive private e¤ects.

ii. x�i is nondecreasing if the private e¤ect is dominant for player i:

That is, AT (x�) 2 B implies A (x�) 2 NIRS:

(c) If, in addition, X = X1 � X2 � � � � Xn is a rectangle and A 2 B for all x or

AT 2 B for all x then equilibrium is unique.

These results are notable for at least four reasons. First, they allow for the terms

of the Jacobian to take any sign, that is, any type of interaction is allowed. Second,

the individual level comparative statics apply to private e¤ects that are dominant for

player i; and this contains the set of private e¤ects that hit only player i: Third,

the hypotheses are simple to check as they involve only the entries of the Jacobian.

Fourth, part (c) establishes an intimate connection between comparative statics and

uniqueness.

To generate some intuition for conditions (6)-(7), it is helpful to think of system

(1) as a system of best response functions in an n�player game on a network where
the n players form the nodes. For any tuple (x; t) ;the weighted digraph describing

the relation between i and j is given by the coe¢ cient matrix

D = I � A:

The o¤ diagonals of this matrix
�
�f ij=f ii

�
i6=j is the collection of interaction terms.

This matrix has zeros on the main diagonal since an increase in own action does not
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directly cause a further change in one�s action. In this setting conditions (6)-(7) can

be interpreted as di¤erent measures of a player�s network centrality.

Let
P

j 6=i�f ij=f ii be player i0s (weighted) indegree. Then condition (6) is satis�ed
if each player�s indegree less than one. In other words, the positive net e¤ect of

others�actions on a player�s own action cannot be to strong.

To interpret condition (7), de�ne player i0s maximal relative negative in�uence-

ability as the maximum negative interaction e¤ect that another player j has on player

i; relative to player i0s indegree:

max

8><>:0;max
8<: nf ij=f

i
i���1 +Pj 6=i f
i
j=f

i
i

���
9=;
j 6=i

9>=>; :
This measure of a player�s centrality captures two e¤ects. First, it is a measure of how

much a player�s action decreases with an increase in other�s action. This is important

since a parameter shock that creates positive private e¤ects may have the opposite

sign as the private e¤ect when there are negative interactions. Second, it roughly

captures variation in negative interaction. As I illustrate in Example 1 below, this

variation also plays an important role in determining whether comparative statics are

well-behaved. Matrix A satis�es condition (7), and hence Theorem 1(a) applies, if

each player�s maximal relative negative in�uenceability is less than one.

In order for AT to be a B�matrix so that Theorem 1(b) can be applied, each

player�s outdegree,
P

j 6=i�f ij=f ii ; and maximal relative negative in�uence,

max

8><>:0;max
8<: nf ji =f

j
j���1 +Pj 6=i f
j
i =f

j
i

���
9=;
j 6=i

9>=>; ;
be less than one. These measures of centrality are analogous to the indegree and

maximal relative negative in�uenceability, but focus on how a player�s action a¤ects

others�actions rather than how a player�s action is a¤ected by others�actions.

The following example of the market demand for a social good illustrates the

approach and assumptions driving the results.
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Example 1. Consider market demand for a social good with three consumers
(players) and coe¢ cient matrix

A =

264 1 a 0

b 1 0

c d 1

375 : (8)

Think of the parameter shock as an increase in the price of the social good so that

the vector of private e¤ects is negative. Under what conditions is market demand

downward sloping?

Case 1, a = 0; b < 0; c > 0; d > 0: In this case player 1�s demand is not in�uenced

by others�consumption. Examine (4) and observe that player 20s demand is increas-

ing in player 10s consumption but independent of player 30s consumption. Player 30s

demand is decreasing in both player 1 and player 20s consumption. Inverting A and

solving for the slope of market demand gives

d��

dt
= � 1

f 11

@f 1

@t
(1� b� c+ bd)� 1

f 22

@f 2

@t
(1� d)� 1

f 33

@f 3

@t
;

where the coe¢ cient on the jth private e¤ect is the jth inverse column sum of A:

Focus on the �rst inverse column sum. If player 1 decreases consumption by

one unit, player 2 decreases consumption by �b units but player 30s consumption
increases by c units. Moreover, player 2�s decrease in consumption causes player 3

to decrease consumption by an additional �bd units. Thus, � 1
f11

@f1

@t
(1� b� c+ bd)

represents the contribution of player 1�s private e¤ect to the slope of market demand

after other players fully respond to his change in consumption. One can interpret

the remaining column sums in similar fashion.

Whether market demand is downward sloping for any vector of negative private

e¤ects clearly depends on the size of the interaction e¤ects of players 1 and 2 on

player 3, but it also depends on their variation. To see this, suppose b = �1
2
while

c = d = 0:8: Then the �rst inverse column sum is 0:3 and every player�s maximal

relative negative in�uenceability is less than one. But if c and d change to 1:6 and

0; respectively, then the �rst inverse column sum is �0:1 even though the sum of

interaction e¤ects c + d remains constant. In this speci�cation player 3�s maximal

relative negative in�uenceability is greater than one.
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Case 2. a < 0; b < 0; c = d = 0: In this case player 1 and 2�s demand increases

with the other�s consumption but player 3�s demand is independent. Intuition would

suggest that market demand is downward sloping, but large feedback e¤ects between

players 1 and 2 can reverse the expected comparative statics. By direct computation

we have
d��

dt
= � 1

f 11

@f 1

@t

�
1� b
1� ab

�
� 1

f 22

@f 2

@t

�
1� a
1� ab

�
� 1

f 33

@f 3

@t
;

so that demand may slope upwards if ab > 1: Note that there is no negative in�uence,

so each player�s maximal relative negative in�uenceability is zero, but each player�s

indegree is less than one only if a; b < 1. �

3.3 Su¢ cient Conditions on the Interaction Terms

While the linear conditions of Theorems 1 are simple to check, it may be useful to

have conditions on the interaction terms to facilitate comparison with existing results.

The special case of anonymous interaction merits attention as well. Anonymous

interaction at x� arises if for all i; f ij = f ik for every j; k 6= i: This case includes

aggregative games where a player�s payo¤ depends only on some monotone function

of the sum of actions (e.g., Corchón 1994).

Corollary 1 The hypotheses of Theorem 1(a)-(b) are satis�ed if either of the follow-
ing conditions is satis�ed at x�:

(a) For all i; jf il =f ii j < 1
2(n�1) for all j 6= i.

(b) For all i jf il =f ii j < 1
n�1 for all j 6= i and interaction is anonymous.

4 Stability

As Case 2 in Example 1 shows, the equilibrium aggregate may decrease with positive

private e¤ects even when all the individual interaction e¤ects are nonnegative. This

seems counterintuitive, even disturbing, but comparative statics analysis by way of

the Implicit Function Theorem is simply a technique, and the behavioral intuition for

these results is typically dynamic. If equilibrium is unstable, the dynamic and static

predictions after a parameter shock di¤er; at stable equilibria they are the same. It

is therefore interesting to evaluate whether comparative static predictions are robust
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to dynamic predictions for some reasonable dynamic speci�cation. I use best reply

dynamics for this purpose, and in this section I characterize stable equilibria.

The main di¢ culty in analyzing stability in discrete time is that standard results

are available for explicitly de�ned systems, but system (1) may be implicitly de�ned.

I solve this problem by transforming system (1) locally into an explicitly de�ned

system via the Implicit Function Theorem. Once this is accomplished I prove two

stability results. One is well-known but I include it for convenience and the second

is kind of �folk�stability result for which I have been unable to �nd a reference.

Consider a deviation to x0 �near�an equilibrium x�: Thinking of system (1) a

system of implicitly de�ned best response functions, one for each player, assume each

player revises his action to best respond to x0: Given the vector of actions x(1) which

results from this process, players again non-cooperatively revise their action to x(2)

to best respond to x(1); and so on.

Formally, system 1 can be written as

f 1 (x1(k);x�1(k � 1); t) = 0

f 2 (x2 (k) ; x�2(k � 1); t) = 0
...

... (9)

fn (xn (k) ; x�n(k � 1); t) = 0

where x�i (k � 1) = (x1 (k � 1) ; :::; xi�1 (k � 1) ; xi+1 (k � 1) ; :::; xn (k � 1)) with ini-
tial value x(0) = x0: Intuitively, in each equation the other players�actions x�i (k � 1)
are taken as given so that (xi (k � 1) ; t) are treated as parameters. Since f ii 6= 0; by
the Implicit Function Theorem there exists a unique function z at (x�; t) such that

x (k) = z (x (k � 1) ; t) : (10)

If we consider deviations within the open neighborhood around (x�; t) in which equa-

tion (10) is valid, we may analyze properties of z directly to determine the local

stability of the equilibrium x�

We need the following notions of stability.

De�nition 1 The equilibrium point x� of (10) is:

1. Stable if given " > 0 there exists � = � (") such that kx0 � x�k < � implies

kx(k;x0)� x�k < " for all k � 0; and unstable if it is not stable.
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Figure 1: Interaction on a circle (left) or on a line (right).

2. Exponentially stable if there exists � > 0; M > 0, and � 2 (0; 1) such that

kx (k;x0)� x�k �M kx0 � x�k �k; whenever kx0 � x�k < �:

By the Implicit Function Theorem, the Jacobian of system (10) is exactly the

weighted adjacency matrix, D = I � A: Standard stability results for nonlinear

di¤erence equations state that equilibrium x� is exponentially stable if � (D) < 1;

where � (D) is the spectral radius of D (e.g., Elaydi, 2000). For autonomous systems

like (10), equilibrium is unstable if � (D) > 1; and may be stable or unstable if

� (D) = 1:

Example 2. To motivate the following de�nitions and results, consider a 3-person
social goods market where individual demand can be solved explicitly in terms of the

others�consumption given prices and wealth. The interaction is described by the

adjacency matrix

D =

264 0 c 0

0 0 c

d 0 0

375 with d 2 f0; cg for c > 0: (11)

Figure 1 represents the direction of interaction depending on the value of d:

If d = c; then interaction takes place on a circle as in the left panel of Figure

1. Feedback e¤ects are present since own consumption indirectly in�uences own

demand. To see this, suppose that, by mistake, player 3 increases his consumption

by one unit. In the next period, player 2 rationally responds by increasing his

consumption c units while player 3 corrects his mistake and returns to equilibrium

In the following period, player 1 increases his consumption c2 units while player 2

returns to his equilibrium consumption. In the third period after the deviation,
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player 3 increases his consumption c3 units while player 1 returns to equilibrium. In

this way, player 3�s demand is indirectly a¤ected by own consumption through the

demand response of others.

In fact, the cycle continues such that the individual whose consumption is not in

equilibrium in the nth period after the deviation is cn units away from its equilibrium

value. If c < 1 then consumption returns to equilibrium in the limit. If c = 1 the

equilibrium is stable to the deviation described but not exponentially stable, and if

c > 1 equilibrium is unstable. Formally, notice that � (D) = c:

If d = 0; then interaction takes place on a line as in the right panel of Figure 1.

Following the logic above, the economy returns to the initial equilibrium in the third

period after any deviation by player 3, independent of the value of c: Formally, if

d = 0 then D is an upper triangular matrix with zeros on the main diagonal. Since

the spectrum of an triangular matrix is the same as its diagonal entries, it follows

that � (D) = 0 for any c:�

Example 2 illustrates that if feedback e¤ects are absent or limited then equilibrium

is exponentially stable. This motivates the following de�nitions.

De�nition 2 D contains a directed cycle if there is a sequence of interaction terms

such that �f i1i2 =f
i1
i1
6= 0;�f i2i3 =f

i2
i2
6= 0; :::;�f iK�1iK

=f
iK�1
iK�1

6= 0 for ik 2 f1; :::; Kg �
f1; :::; Ng and i1 = iK :

De�nition 3 D is acyclic if it does not contain a directed cycle.

De�nition 4 Feedback e¤ects exist if D contains a directed cycle.

In the social goods market example above, feedback e¤ects exist if d = c since

�f 23 =f22 6= 0;�f 12 =f11 6= 0; and �f 31 =f33 6= 0: When feedback e¤ects are present,

a su¢ cient condition for stability is that the magnitude of the interaction e¤ects

is limited. I borrow the concept of �moderate social in�uence� from the social

interactions literature to formally de�ne this condition (e.g., Glaeser and Scheinkman,

2000; Horst and Scheinkman, 2006; Christensen and Jung, 2010). In particular, say

that actions are subject to moderate social in�uence at x if kDk < 1 at x; where k:k
is any matrix norm induced by a vector norm.
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Two especially useful matrix norms in this context are:

kDk1 = max
i

nX
j=1

��f ij=f ii �� (maximum absolute row sum), and

kDk1 = max
j

nX
i=1

��f ij=f ii �� (maximum absolute column sum).

These are functions of a player�s absolute indegree,
Pn

j=1

��f ij=f ii �� ; and absolute
outdegree,

Pn
i=1

��f ij=f ii �� ; respectively. When we are concerned with stability we

must take the sum of absolute values since stability does not hinge on the direction

of reaction, whereas comparative statics results clearly do.

If actions are subject to moderate social in�uence under the maximum absolute

column sum norm, then there is no individual whose choices a¤ect the actions of

others too strongly. Alternatively, if actions are subject to moderate social in�uence

under the maximum absolute row sum norm, then there are no individuals whose

choices are a¤ected too strongly by the actions decisions of others. Note that it is

possible that are subject to moderate social in�uence under one norm but not the

other. However, interactions fail to be moderate under either norm if
��f ij=f ii �� > 1

for any (i; j) pair. Notice that in Example 2, D satis�es both norms if c < 1 when

interaction takes place on a circle:

Theorem 2 Equilibrium x� is exponentially stable if either of the following conditions
is satis�ed at equilibrium.

(a) Feedback e¤ects are absent.

(b) Actions are subject to moderate social in�uence at x�.

Proof. (a) D is acyclic if and only if it is nilpotent. Hence, � (D) = 0:

(b) It is well known that � (D) � kDk for any matrix norm k:k :
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5 Comparative Statics and Stability

It is helpful to consider a 3-person example to better understand the relationship

between comparative statics and stability. In this case we have

A =

264 1 f 12 =f
1
1 f 13 =f

1
1

f 21 =f
2
2 1 f 23 =f

2
2

f 31 =f
3
3 f 32 =f

3
3 1

375 :
It follows from Theorems 1 and 2 that if for each player the absolute indegree, in-

degree, and maximal relative in�uenceability are moderate, the equilibrium is stable

and the equilibrium aggregate is nondecreasing if the private e¤ects are positive.

These linear conditions are simple to check. In a three person economy, the

absolute indegree for each player is moderate, and hence equilibrium is stable, if

��f ij=f ii ��+ ��f ik=f ii �� < 1 for all i and j 6= k 6= i: (12)

Figure 2 illustrates this condition for a single individual i: The vertical axis

represents the e¤ect on i0s action of a change in j0s action, while the horizontal axis

represents the e¤ect on i0s action of a change in k0s action. The diamond in Figure

2 with vertices at (0; 1) ; (1; 0) ; (0;�1) ; and (�1; 0) is the set of interaction terms
that satisfy condition (12) for a single individual. If the interaction terms for all

individuals lie within this set then equilibrium is exponentially stable. If there is

at least one individual for whom the interaction terms are outside of this set then

equilibrium is possibly unstable.

Turning to the comparative statics, the equilibrium aggregate is nondecreasing

for positive private e¤ects if each player�s indegree and maximal relative negative

in�uenceability is less than one. For player i this requires

1� f ik=f ii � f ij=f ii > 0; (13)

�f ij=f ii <
1

3

�
1� f ij=f ii � f ik=f ii

�
; and (14)

�f ik=f ii <
1

3

�
1� f ij=f ii � f ik=f ii

�
: (15)

The �rst inequality limits player i0s indegree while last two limit his relative negative

in�uenceability. The triangle in Figure 2 with points at (0; 1) ; (1; 0); and (�1;�1)
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fi
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Figure 2: The Relationship Between Stability and Comparative Statics in a 3-equation
system. The regions indicate the areas where equilibrium is exponenetial stable or
possibly unstable, and where comparative statics are well-behaved or possibly ill-
behaved.
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illustrates the set of interaction terms that satisfy inequalities (13)-(15). If the

interaction terms for all individuals lie within this set then the equilibrium aggregate

is nondecreasing. If there is at least one individual for whom the interaction terms

are outside of this set the equilibrium aggregate may decrease with positive private

e¤ects.

5.1 Strategic Complements

By strategic complements I mean that the interaction terms are all nonnegative,

�f ij=f ii � 0 for i 6= j; i = 1; :::; n: As was demonstrated in Case 2 of Example 1, even
the equilibrium aggregate may decrease when private e¤ects are positive. In this

section, I show that this prediction is not robust under best reply dynamics, a result

suggested examining the upper right quadrant of Figure 2. In fact, I demonstrate

the much stronger result that equilibrium is nondecreasing if and only if equilibrium

is exponentially stable.

This result is an Implicit Function Theorem-based version of the lattice-based

result in Echenique (2002) in which it is shown that if equilibrium is not monotone

increasing in an exogenous parameter then equilibrium must be unstable under a

broad class of adaptive dynamics.5 My result applies to best reply dynamics, but the

payo¤ is an incredibly simple proof of this powerful result. In addition, this approach

allows for the new result that equilibrium is unique if � (D) < 1 for all x:

The proof follows from the theory of M�matrices (e.g., see Bapat and Raghavan,
1997). The n � n matrix � is called an M-matrix if it can be written � = �I � Y
for some nonnegative matrix Y and scalar � > � (Y ) : One of the many interesting

properties of these matrices is that ��1 � 0 if and only if � is an M�matrix. This
fact has been known in the economics literature as early as Debreu and Herstein

(1953).

Theorem 3 Suppose there are strategic complements.

(a) x� is nondecreasing for any vector of positive private e¤ects if and only if x� is

exponentially stable. Speci�cally, (i) � (D (x�)) < 1 if and only if A�1 (x�) � 0;
and (ii) A (x�) is not invertible if � (D (x�)) = 1:

5Both results can be viewed as a formal statement of Samuelson�s (1947) �Correspondence Prin-
ciple.�
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(b) Equilibrium is unique if � (D) < 1 for all x and X = X1 � X2 � � � � Xn is a

rectangle.

In fact, if x� is unstable, Xi for i = 1; ::; n is convex and compact, and z describes

global dynamics, then play converges to a vector �x � x� (�x 6= x�) after a parameter
shock which creates positive private e¤ects. This follows from the monotone conver-

gence theorem since dynamic system (10) generates a monotone increasing sequence�
xk
	1
0
after a parameter shock. In fact, the same result applies under any adaptive

dynamic where an individual increases his action if others increase theirs, whether or

not players are best responding. In this sense, the comparative statics technique fails

to give a satisfactory prediction of behavior at unstable equilibria. I give a simple

graphical example of this result in the context of the market demand for social goods

in Section 7.

Suppose z is continuous in addition to describing global dynamics. Then �x is an

equilibrium if x� is an unstable interior equilibrium:

�x = lim
k!1

xk = lim
k!1

z
�
xk
�
= z( lim

k!1
xk) = z(�x):

A similar argument establishes the existence of a second equilibrium ~x � x� (~x 6= x�)
to which

�
xk
	1
0

converges if the parameter shock causes a negative private e¤ect.

In other words, the existence of an unstable interior equilibrium implies the existence

of a lower and higher equilibrium.

5.2 Strategic Substitutes

By strategic substitutes I mean that all the interaction terms are nonpositive, or

�f ij=f ii � 0 for i 6= j; i = 1; :::; n: Unsurprisingly, no result analogous to Theorem 3

is available in general. For example, suppose

A =

"
1 a

b 1

#
:

Then � (D) � 1 if and only if ab � 1: But letting eT = (1; 1) we have A�1e =
1

1�ab (1� a; 1� b)
T : Thus, even in a stable equilibrium, a player�s equilibrium action

can decrease in response to parameter shock that creates a positive private e¤ect.

For example, consider a > 1 and b < 1
a
:
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As suggested by the lower left quadrant of Figure 2, the results in this section

demonstrate that well-behaved comparative statics are more likely to arise when

interaction e¤ects are limited in size and variation. The intuition behind limiting the

size of negative interaction e¤ects is obvious, so let me focus on the intuition for why

heterogenous interaction terms can lead to a decrease in the equilibrium aggregate.

Note that this situation is represented in the lower left quadrant of Figure 2 by the

area formed by the two triangles inside the stability line but outside the cone of

well-behaved comparative statics.

To take an example from the demand for social goods, consider recreational ac-

tivities subject to congestion like downhill skiing or sur�ng. In each instance, the

location, a ski resort or a beach that generates reliable waves, is �xed in the short run.

Assume the marginal utility of the activity for any skier or surfer is decreasing with

congestion. Additional participants means one is more likely to be in a collision, to

have more di¢ culty in skiing a clean run or catching a good wave, and the interval

between runs or rides is longer because of congestion at the lift or line-up. How-

ever, skilled participants may generate smaller externalities since these participants

are more knowledgeable of etiquette and less likely to interfere with one�s enjoyment

of the activity. If willingness to pay for the activity is positively related with skill,

which is not an unreasonable assumption since skilled participants likely obtained

their skill from repetition, then skilled participants may be willing to pay more to

be among a greater quantity of skilled participants rather than a lesser quantity of

unskilled participants. Thus, a ski resort may be able to charge a higher price and

attract more skiers if it can select for more highly skilled skiers. This may explain

why resorts with more di¢ cult trails are higher priced and more crowded than equally

sized, nearby resorts with easier trails.

This example does not apply well to all congestion situations. Probably the most

reasonable assumption for tra¢ c congestion is anonymous e¤ects since in the vast

majority of cases each additional vehicle creates same negative externality. In this

case the demand curve is downward sloping. That being said, it may be possible for

toll operators to select for better drivers, and consequently face a less elastic demand

curve, by selling passes only to those who have good driving records.

Turning to the results, note that under strategic substitutes each player�s indegree

and outdegree is negative. Thus the following corollary gives su¢ cient conditions

under which the maximal relative negative in�uence and in�uenceability of each player
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is moderate.

Corollary 2 Suppose there are strategic substitutes.
(a) The hypotheses of Theorem 1(a) are satis�ed if for all i; maxj 6=i

�
f ij=f

i
i

�
<

1
n�1 +

n�2
n�1 minj 6=i

�
f ij=f

i
i

�
.

(b) The hypotheses of Theorem 1(b) are satis�ed if for all j maxi6=j
�
f ij=f

i
i

�
<

1
n�1 +

n�2
n�1 minj 6=i

�
f ij=f

i
i

�
.

Stronger results are available when interaction is anonymous, but they require

some additional background. Say that A � 0 is an inverse M�matrix if A�1 =
�I � Y for some nonnegative matrix Y and scalar � > 0 such that � (Y ) < 1:

Importantly, inverseM�matrices have an inverse whose main diagonal is nonnegative
and nonpositive o¤-diagonal terms. Fully characterizing this class of matrices is an

open problem, but some results exist (see Johnson and Smith, 2011). In this paper

I will use results from Martínez, Michon, and Martín (1994) and Johnson and Smith

(2007).

Martínez, Michon, and Martín (1994) show that strictly ultrametric matrices are

inverse M�matrices whose inverse is strictly row and column diagonally dominant.
The matrix A is a strictly ultrametric matrix if:

(i) A is symmetric with nonnegative entries,

(ii) f ij=f
i
i � min

�
f ik=f

i
i ; f

k
j =f

k
k

	
for all i; j; k 2 f1; :::; ng ;

(iii) 1 > max ff ik=f ii : k 2 f1; :::; ng nig for all i 2 f1; :::; ng :

Johnson and Smith�s (2007) characterization requires A to satisfy the strict path

product property:
f ij
f ii

f jk
f jj
� �f

i
k

f ii

for all distinct indices i; j; k such that 1 � i; j; k;� n with strict inequality whenever
i = k: (Notice that f ij = 0 implies f

j
kf

k
j = 0 for all k:) Intuitively, if player k has

an interactions e¤ect on player i; then this e¤ect is greater than any e¤ect which

emanates from player k through a third player. Johnson and Smith�s Theorem 3

implies that if A satis�es the strict path property, n � 3; and for i 6= j

X
k 6=i;j

f ij
f ii

f jk
f jj
� 1;
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then A is an inverse M�matrix.

Theorem 4 Suppose there are strategic substitutes, n � 3, and interactions are

anonymous at x�, f ij=f
i
i = ci for all i:

(a) If ci < 1; the equilibrium aggregate H(��) increases with positive private e¤ects.

(b) If ci < 1p
n�2 for all i; x

�
i increases if a positive parameter shock hits only player

i and x�i decreases if a positive parameter shock misses player i:

(c) If ci = c < 1 for all i; x� increases under a uniform and positive private e¤ects,

x�i increases if the private e¤ect is dominant for player i; and x
�
i decreases if a

positive parameter shock misses i:

(d) If any of the hypotheses from parts (a)-(c) apply at all x and X = X1�X2 � � ��
Xn is a rectangle, then equilibrium is unique.

Proof. (a) This is a special case of Corollary 2. (b) A is an inverse M�matrix
by Theorem 3 in Johnson and Smith (2007). (c) A is a strictly ultrametric matrix.

(d) This follows immediately from the proof of Theorem 3(c) and the fact that any

inverse M�matrix is a P�matrix (Horn and Johnson, 2001).
Notice that the individual level comparative statics apply under weaker condi-

tions when greater homogeneity is imposed. Starting with arbitrary interactions,

then anonymous interaction or strategic substitutes, then strategic substitutes and

anonymous interaction, and �nally strategic substitutes and identical interaction ef-

fects, the su¢ cient conditions on the interaction terms for well-behaved comparative

statics are, for n � 3; 1
2(n�1) <

1
n�1 <

1p
n�2 � 1:

6

These results considerably generalize Dixit (1986) who considers an environment

with strategic substitutes and anonymous interaction. In addition to some other

conditions, Dixit shows that strict row diagonal dominance of A is su¢ cient for x�i
to increase with positive private e¤ects that hits only player i: Recall that strict row

diagonal dominance requires that the diagonal entry of each row be strictly greater

than the absolute sum of its o¤ diagonal entries. In other words kDk1 < 1: With
anonymous interaction e¤ects, Dixit�s su¢ cient condition becomes ci < 1

1�n for all i:

My results show that this condition is su¢ cient in an environment with either

anonymous interaction or strategic substitutes, and in both cases apply to positive

6In order, see Corollary 1(a), Corollary 1(b), Corollary 2, Theorem 4(b) and Theorem 4(c).
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private e¤ects that are dominant for player i: The fact that anonymous interaction is

unnecessary is especially notable. In justifying the product homogeneity assumption,

Dixit writes (p. 119) that under heterogeneity, �in each row the o¤-diagonal elements

would all be di¤erent, and the matrix would be just the general n-by-n matrix. No

structure could be imposed on its inverse, and no meaningful results could emerge.�

Moreover, under the same hypotheses and parameter shocks as Dixit I am able to

relax his condition to ci < 1p
n�2 for all i (Theorem 4(b)). Moreover, in contrast to

the 1
1�n condition, Theorem 4(c) covers the textbook case of homogeneous product

oligopoly where bij = b for all i; j 2 f1; :::; ng in equation (2).
The �nal result of this section generalizes Dixit (1986) in a di¤erent direction

by showing that strict diagonal dominance yields well-behaved comparative statics

even without anonymous interaction. Loosely speaking, the equilibrium aggregate

increases with positive private e¤ect if there is no one person who �spoils the fun

for everyone�in that an increase in their action causes a cumulatively large negative

e¤ect on others actions. Thus, such a �spoiler� is a necessary condition for ill-

behaved comparative statics. Moreover, well-behaved individual level comparative

statics arise as long as no one is too much of a �snob�whose action is su¢ ciently

negatively in�uenced by a one unit increase in all others�actions.

Interestingly, the proof of this result relies only on simple algebra and the well-

known Neumann expansion. This illustrates one of the bene�ts of studying stability

in discrete time versus continuous time as in Dixit (1986).

Theorem 5 Suppose there are strategic substitutes at x�:

(a) If kD (x�)k1 < 1; then equilibrium is exponentially stable and the equilibrium

aggregate is nondecreasing with positive private e¤ects.

(b) If kD (x�)k1 < 1; then equilibrium is exponentially stable and (i) x� is nonde-

creasing for uniform positive private e¤ects, and (ii) x�i is nondecreasing for a

positive private e¤ect that hits only player i:

(c) If for all i; Xi is convex, f i is monotone in xi, and kDk1 < 1 for all x or

kDk1 < 1 for all x then equilibrium is unique.
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6 Linear Systems

In this section I brie�y investigate the case where system (1) is linear. That is, we

can write

xi = �i(t)�
X
i6=j

�ij(t)xj for �i > 0 and i = 1; :::; n:

In this setting, f ij=f
i
i = �ij. Several models fall into this class including the Cournot

di¤erentiated oligopoly with linear costs model from equation (3), and the linear

quadratic payo¤ functions studied in Ballester, Calvó, and Zenou (2006). Bramoullé,

Kranton, and D�Amours (2014) (hereafter BKD) study the case where �i (t) = 1 for

all i, �ij (t) = �gij for gij f0; 1g and � > 0; and gij = gji:
BKD show that the sum of equilibrium actions is increasing in � in any stable

equilibrium. They do not provide results for the individual level and their proof relies

on maximizing behavior as well as on the potential game structure. Theorem 5 pro-

vides similar comparative statics results on the equilibrium aggregate and individual

level actions without such assumptions.

One can also use Theorem 5 to characterize comparative statics in the BKD frame-

work in terms of a player�s degree, where the degree d (i) of player i is the number

of links the player has in a network, or d (i) =
P

j gij: BKD restrict actions to be

nonnegative, and a player is active if his equilibrium action is strictly positive, and

inactive if his equilibrium action equals zero. Let dA (j) =
P

i g
A
ij be the degree of

player j to active agents, where gAij = 0 if player i is inactive; if player i is active, then

gAij = gij:

Corollary 3 Consider the BKD framework.

(a) If dA (i) < 1=� for all i; then equilibrium is exponentially stable and the equilib-

rium aggregate is increasing for any positive parameter shock.

(b) If d (i) < 1=� for all active agents; then equilibrium is exponentially stable and

x� is increasing for a uniform positive private e¤ect.

Let � = (�1; :::; �n)
T : Since x� = A�1� and dt = A�1@t; the linear environment

allows us to establish relationships between equilibrium properties and comparative

statics.
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Theorem 6 Suppose system (1) is linear and �i = �� > 0 for all i: Then sgn(x�i ) =

sgn(
dx�i
dt
) if @t > 0 is uniform, and sgn(

P
x�i ) = sgn(

d
dt
H(
P
x�i )) if @t > 0 is uniform.

Proof. The result follows from the fact that x�i =
�Pn

j=1 a
�1
1j

�
� and dti =

�Pn
j=1 a

�1
1j

�
@t:

Let us apply this result to the BKD framework. A degree uniform network is

a network where each player has the same degree, d (i) = d for all i:7 Theorem 6

implies that for any positive symmetric equilibrium8 in a degree uniform network, x�

is decreasing in �:

Corollary 4 Consider the BKD framework for a degree uniform network. Then for

any positive, symmetric equilibrium, x� is decreasing in �:

Proof. dx�i
d�
+
P

j 6=i gij
dx�j
d�
= �

P
j 6=i gijx

�
j = �d (i)x�k = �dx�k for all i and any k; where

the penultimate equality follows from symmetry and the last equality follows from

the fact that the network is degree uniform. Therefore, an increase in � represents a

uniform negative shock, and the result follows from a minor modi�cation of the proof

of Theorem 6.

To conclude this section, I provide a cautionary example of a stable, symmetric

equilibrium where the unique solution is decreasing with a uniform positive private

e¤ects. From a technical point of view, the example demonstrates the need for the

assumption �i = �� for all i in Theorem 6.

Example 3. Consider the di¤erentiated products oligopoly environment from
Section 2. The linear case �ts into the BKD framework and is a degree uniform

network. Suppose there are 3 �rms with ci (xi) = 20xi for all i. The inverse demand

functions are

p1 = 300� x1 � :4x2 � :4x3
p2 = 560� 3x1 � x2 � :4x3
p3 = 560� 3x1 � :4x2 � x3

7One important example of a degree unifrom network is a complete bipartite graph where the
set of nodes is partitioned into two subsets of equal size. Another example is interaction on a circle
where each agent interacts with his nearest d=2 neighbors. In fact any static game where each
player interacts with every other player may be thought of as a degree uniform network.

8That is, x�i = x
�
j > 0 for all i; j:
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The unique equilibrium is (x�1; x
�
2; x

�
3) = (100; 100; 100) and the corresponding prices

are (p�1; p
�
2; p

�
3) = (120; 120; 120) Constructing matrix D from the system (3) we have

D =

264 0 �:2 �:2
�1:5 0 �:2
�1:5 �:2 0

375 :
Equilibrium is stable since � (D) � 0:85:
In an e¤ort to stimulate the industry, suppose the government provides a uniform

subsidy of s = 20 per unit for each �rm so that the marginal cost of each �rm net

of the subsidy is zero. The new equilibrium is (x�1; x
�
2; x

�
3) =

�
1131

3
; 912

3
; 912

3

�
. Not

only does the output of �rms 2 and 3 decrease with the subsidy, but industry output

also falls from 300 to 2962
3
:

This is somewhat surprising since the �rms have identical costs and �rms have the

same quantities, prices, and pro�ts in equilibrium. Without information about the

underlying demand curves, the initial equilibrium is indistinguishable from a 3��rm
Cournot oligopoly with homogeneous products. Hence, one might expect that a

uniform subsidy would increase the output of all �rms.

The intuition is as follows. A subsidy directly increases the pro�tability of the

next unit by lowering production costs. This is the private e¤ect of the subsidy. An

increase in a �rm�s output, however, has a business stealing e¤ect on other �rms in

the industry, which is the interactions e¤ect of the subsidy.

When products are homogeneous, the business stealing e¤ect is symmetric so that

each �rm�s output increases. In this example, however, the business stealing e¤ect

is much stronger for �rm 1. The lower production costs allow �rm 1 to steal enough

business from �rms 2 and 3 that the latter �rms�output decreases with the subsidy.

7 Application to the Demand for Social Goods

�Almost the whole value of strawberries in March...is the fact that others

cannot get them.�Henry Cunynghame, 1892

�When a royal personage condemns a barbarous fashion, the osprey yields

to arti�cial �owers.�A.C. Pigou, 1913

Classical demand theory assumes preferences are independent. However, ever
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since Marshall�s Principles in 1890, economists have recognized that others�s con-

sumption can in�uence own demand in important ways.9 The formal literature on

the shape of market demand in this case has bene�tted from the development of game

theory, but systematic analysis of market demand with interdependent preferences re-

mains scarce10. Basic results are repeated and often rely on strong assumptions on

the nature of the interdependence. In this section I use the insights from the paper

to unify and clarify some results from the literature.

Leibenstein (1950) may be considered one of the �rst formal analyses of social

markets. He considered the case of strategic complements (i.e., bandwagon e¤ects)

and strategic substitutes (i.e., snob e¤ects). While Leibenstein argued that market

demand should be downward sloping even when these e¤ects exist, it is well known

that demand in social markets may be upward sloping (e.g., Katz and Speigel, 1996;

Rohlfs, 1974; Becker, 1991; Becker and Murphy, 2000). The typical intuition is

simple. In the case of strategic complements, at a given price, some consumers may

choose not to consume a good until it attracts a critical mass of consumers. This

leads to multiple equilibria which necessitates upward sloping demand if demand is

continuous and not horizontal. In the case of strategic substitutes, some individuals

refuse to consume a good unless prices are high, because only then does the product

become exclusive as other consumers drop out of the market.

7.1 Strategic Complements

The most abundant models of interdependent preferences deal with the case of strate-

gic complements. The demand curves which appear in Leibenstein (1950), Rohlfs

(1974) and Becker (1991) are special cases of this model. The di¤erence between

them lies in the degree to which social interactions in�uence individual demand. To

be speci�c, when there are strategic complements call good X a purely social good at

(p; w) for individual i if f i (0) = 0; f ij (0) = 0 for all j; and there exists x � 0 (x 6= 0)
such that f i (x) > 0: Purely social goods do not carry enough private value for an

individual to consume unless there is a su¢ cient amount of consumption already tak-

ing place. This is often described as a good that requires critical mass to have value.

The classic example from Rohlfs is the telephone, but many other goods fall into this

9See, for example, Cunynghame (1892), Veblen (1899), Pigou (1913), and Duesenberry (1949),
and Morgenstern (1948).
10But see Pollak (1976).
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Figure 3: Strategic complements with a quasi social good.

category like social media and Internet dating sites.

Call X a quasi social good at (p; w) for individual i if f i (0) > 0 and there exists

x � 0, (x 6= 0) such that f i(x) > f i (0) : Quasi social goods hold value for consumers
even when no one else buys the good, but demand still increases with others�con-

sumption. This may describe bandwagon e¤ects or the �keeping up with the Jones��

phenomenon. Examples include computer operating systems, smart phones, cars,

homes, and clothing.

Consider a market with two people whose preferences are represented by the Cobb-

Douglas utility function

ui = x
�i+�ixj
i y

�i
i ,

where �i > 0; �i > 0; and �i + �i > 0 for i = 1; 2: The parameter �i can be

interpreted as individual i0s taste for conformity since higher values imply a greater

relative importance of xi in overall utility. Individual i0s demand for good X is

f i (xj; p; wi) =

(
0 if �i < ��ixj

�i+�ixj
�i+�i+�xj

wi
px

if �i � ��ixj
:

Case 1 �1 = �2 = 0:
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Figure 4: Strategic complements with a purely social good.

In this case, good X is on the margin of the class of quasi social goods. The zero

equilibrium exists, but there is also a unique positive equilibrium which is easy to

obtain:

x�i =
�1�2w1w2 � p2x�1�2
�jpx (�iwj + px�i)

for i = 1; 2:

One can verify that x�i is decreasing in price for i = 1; 2, which implies x� is an

exponentially stable equilibrium by Theorem 3. In addition, demand is increasing in

own and others�wealth, and increasing in �1 and �2:

Case 2 �1; �2 > 0:

Good X is a quasi social good for both individuals. There exists a unique,

exponentially stable equilibrium as illustrated in Figure 3; best reply dynamics from

a deviation to D1 lead back to A: Moreover, equilibrium has the same comparative

statics as Case 1. To see this, note that player 10s demand curve shifts down when

px increases, or w1 or �1 decrease. Similarly, player 2�s demand curve shifts to

the left when px decreases, or w2 or �2 decrease. The market demand curve is

downward sloping everywhere, as illustrated in Figure 3.b. This market demand

curve is consistent with Leibenstein (1950).
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Case 3: �1; �2 < 0:

In this case good X is a purely social good. The zero equilibrium always exists,

and there may be zero, one, or two positive equilibria. Figure 4.a illustrates the case

of two positive equilibria. Note that the equilibrium B is unstable and corresponds

to an upward sloping section of market demand.

Consider the e¤ect of an increase in price on the equilibrium at B: Player 1�s

demand curve shifts down while player 2�s shifts left. The equilibrium locally shifts

to B0 which reverses the expected comparative statics with respect to p; �; and w.

Gisser, et. al. (2009) have also illustrated that pathological comparative statics arise

in upward sloping sections of demand with strategic complements, but this paradox

is resolved by noting that B0 is an unstable equilibrium. Once the price changes, we

may think of B as a deviation from B0; and, as illustrated, best response dynamics

leads the economy to the zero equilibrium from B: In other words, an increase in

price at equilibrium B causes consumption to collapse to zero. This is consistent

with the discussion after Theorem 3.

In general, the market demand curve has an inverted U shape (Figure 4.b). The

equilibria to the left of the demand curve�s peak are unstable whereas the equilibria

to the right are stable. This is the same type of demand curve which arises in Rohlfs�

(1974) application.

Case 4 �1 < 0 and a2 > 0:

In this case, good X is quasi social for player 2 but purely social for player 1.

Market demand may be downward sloping with a single equilibrium at high prices,

multiple equilibria at intermediate prices, and then a single equilibrium at low prices

where demand is downward sloping. This is illustrated in Figure 5. At low prices

like p1; player 2�s consumption is su¢ ciently high at all levels of x1 to induce player

1 to also consume. In this case equilibrium is unique and corresponds to point A in

Figure 5.

At intermediate prices like p2; player 2�s consumption when x1 = 0 is not su¢ cient

to induce player 1 to purchase the good. This is represented by pointD. However, at

higher levels of x2; player 1 would consume a positive amount. Two possible equilibria

are represented by points B and C: At p2; B and D are exponentially stable, but C

is unstable. At even higher prices (not pictured), only player 2 consumes the good,

but it is never enough to induce player 1 to purchase the good. As noted in Becker

32



F(px)

px

b. Inverse market demand.

p1

p2

A

BD
Cf1(x2;p2)

x1

a. Individual demands

f1(x2;p1)

f2(x1;p1)

x2

f2(x1;p2)

D C

B

A

Figure 5: Good X is purely social for Mr. 1 but quasi social for Mr. 2.

(1991), this type of demand curve can help explain why the popularity of restaurants

or bands can appear random. There are �hard core�fans like player 2 but also casual

fans like player 1 who like the band only when it is popular.

These examples illustrate that when strategic complements exist, upward sloping

demand should be interpreted as an increase in consumers� willingness to pay as

consumption increases, rather than a situation in which sellers can increase the price

and sell more. In fact, an increase in price at upward sloping points on the demand

curve could cause demand to collapse. Upward sloping demand opens the possibility

to a situation where there is a stable equilibrium with a higher price and quantity

than an alternative equilibrium.

7.2 Strategic Substitutes

Strategic substitutes give rise to the possibility of stable, upward sloping demand.

To illustrate, suppose �f 12 < 0 but f 21 = 0: Since there are no feedback e¤ects any
equilibrium is stable. Figure 6.a illustrates a situation in which player 1�s demand is

decreasing and convex in player 2�s consumption. When price increases from p1 to p2;

the private e¤ect decreases consumption for both individuals: f 2 (x1; p2) < f 2 (x1; p1)

for all x1 and f 1 (p2;x2) < f 1 (p1; x2) for all x2: However, the interactions e¤ect
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Figure 6: Stable upward sloping demand with strategic substitutes.

on player 1�s consumption counteracts and in fact overwhelms the private e¤ect:

f 1 (p2; f
2 (x1; p2)) > f 1 (p1; f

2 (x1; p1)) : This e¤ect is so strong that total quantity

demanded increases. This is illustrated in panel a since B is above the 45-degree line

running through A: Note that a necessary condition for market quantity to increase

with price is that �f 12 < �1 for some x2 between f 2 (x1; p1) and f 2 (x1; p2) :
At prices well above p2; the market demand curve in panel b illustrates the situa-

tion where player 2�s demand falls to zero so that only player 1 is in the market. At

prices su¢ ciently below p1; the marginal external consumption e¤ect of player 2 on

player 1�s demand is small enough so that market demand is again downward sloping.

The interesting observation here is that an increase in price in the upward sloping

region of market demand will increase quantity demanded. This is consistent with

the situation in which a rich snob�s demand is increasing in price because higher

prices force poor people out of the market towards substitutes. However, upward

sloping demand can result even if the two individuals have the same wealth. For

example, the �snob�may have a strong preference for the social good with a strong

interactions e¤ect while the other person only consumes a signi�cant amount when

the price is low.
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8 Conclusion

This paper characterizes comparative statics of the equilibrium aggregate under for

positive parameter shocks, and characterizes the comparative statics for the individ-

ual equilibrium action for uniform positive shocks as well as shocks that are dominant

for an individual. Interactions are allowed to take any form. Even at this level of

generality, the simple linear conditions on the interaction terms ensure that equilib-

rium is stable and that the equilibrium aggregate and individual equilibrium action

increase with these parameter shocks. If the linear conditions apply globally, equilib-

rium is unique. In the context of a game on a �xed network, these linear conditions

are interpreted as each player having moderate centrality in the underlying network.

An important takeaway is that in a stable equilibrium the equilibrium aggregate

and individual equilibrium actions may decrease under these parameter shocks only

if (i) an increase in some player�s action causes at least one other player to decrease

their action, and (ii) interaction e¤ects are heterogeneous. In short, heterogeneity

matters. If strategic substitutes exist, then there also must be one �spoiler�whose

action has a strong cumulative e¤ect on others�action for the equilibrium aggregate

to decrease, and there must be a �snob�whose action strongly is in�uenced by others�

actions for the individual level equilibrium action to decrease.
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9 Appendix

Proof of Lemma 1. (a)-(b) Both facts follow from @t � 0 and dt = A�1@t. (c)

From dt = A�1@t we have for each i dfi
dt
= �

Pn
j=1 a

�1
ij

@fj
@t

1

fjj
. It follows that

d��

dt
=

nX
i=1

dx�i
dt

= �
nX
i=1

nX
j=1

a�1ij
@fj
@t

1

f jj
= �

nX
j=1

 
nX
i=1

a�1ij

!
@fj
@t

1

f jj
:

Then dH(��)
dt

� 0 for every vector @t � 0 if and only if
Pn

i=1 a
�1
ij � 0 for all i:

Proof of Theorem 1. (a) Let � = (ij) be the cofactor matrix of A: Since

A�1 = �T

detA
, the inverse column sums are

Pn
j=1

ij
detA

: Since A 2 RMPD we have

detA > 0; and by extension
Pn

j=1 ij � 0 for all i: To see this, let

Ai (") =

266666666664

1 f 12 =f
1
1 � � � � � � f 1n=f

1
1

f 21 =f
2
2 1 f 2n=f

2
2

...
. . .

...

1� " 1� " � � � 1 � � � 1� "
...

. . .
...

fn1 =f
n
n fn2 =f

n
n � � � � � � 1

377777777775
be the matrix obtained by replacing o¤ diagonal terms of the ith row of A with 1� "
for " 2 (0; 1). Ai (") 2 RMPD, so expanding along the ith row we have detAi (") =
ii + (1� ")

Pn
k 6=i ik > 0: It follows from the continuity of the determinant function

that lim"!0 detA
i (") =

Pn
j=1 ij � 0: Thus, A 2 NICS. Apply Lemma 1.c.

(b) AT 2 B implies AT 2 NICS by part (a). It follows from
�
AT
��1

= (A�1)
T

that A 2 NIRS. Apply Lemma 1.b.
(c) By Cramer�s rule, dx�i

dt
= detAi

detA
where Ai is the matrix obtained from A by

replacing column i with the vector @t: If the private e¤ect is dominant for player i,

then A 2 B: Hence, detAi > 0:
(d) A B�matrix is a P�matrix (Peña, 2001). Thus f : X ! Rn is globally

univalent by Theorem 4 in Gale and Nikaido (1965).

Proof of Corollary 1. (a) It is easy to see that the conditions imply kDk1 < 1

and that A satis�es inequalities (6): 1 �
P

j 6=i f
i
j=f

i
i > 1 � (n� 1) 1

2(n�1) > 0: If

f ij=f
i
i � 0, then obviously A is satis�es inequalities (7). Suppose f ij=f ii > 0 for some
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(i; j) pair. Then

max
j 6=i

�f ij=f ii <
1

2 (n� 1) =
1� (n� 2) 1

2(n�1)

n
<
1�

P
j 6=i f

i
j=f

i
i

n
;

which shows that A satis�es inequalities (7). The same argument can be made for

AT :

(b) Under anonymous interaction
��f ij=f ii �� = ci < 1

1�n for all j 6= i: Thus, kDk1 <
1 and kDk1 < 1 is equivalent to ci < 1

n�1 for all j 6= i: Clearly ci <
1
n�1 implies A

satis�es inequalities (6). In addition, nci < 1 + (n� 1) ci which proves that A also
satis�es inequalities (7). The same argument can be made for AT :

Proof of Theorem 3. (a.i) Under strategic complements; A = I � D is an

M -matrix if and only if � (D) < 1. The result follows from Lemmas 1.a.

(a.ii). Let � (D) denote the spectrum of D and � (A) the spectrum of A: Since

the eigenvalues of D are the roots of the characteristic equation det (D � �I) = 0;

and A = I �D; we have 1� � 2 � (A) if and only if � 2 � (D) :
By the Perron-Frobenius Theorem, � (D) is a real, simple eigenvalue of D if D

is irreducible. Theorem 1.7.3 in Bapat and Raghavan (1997) extends this result to

reducible matrices. Since � (D) = 1; A possesses a zero eigenvalue, and this implies

A is not invertible.

(b) A is an M�matrix for all x which implies A is a P�matrix for all x (Horn
and Johnson, 1991). Theorem 4 in Gale and Nikaido (1965) implies f : X ! Rn is
globally univalent.

Proof of Corollary 2.
(a) It is obvious that the row sums of A are positive. The conditions of the

corollary imply

nf ij=f
i
i � nmax

j 6=i

�
f ij=f

i
i

�
< 1 + (n� 2)min

j 6=i

�
f ij=f

i
i

�
+max

j 6=i

�
f ij=f

i
i

�
� 1 +

X
j 6=i

f ij=f
i
i :

as desired.

(b) A similar argument shows that AT satis�es inequalities (6)-(7).

Proof of Theorem 5.
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(a) It is immediate from kDfk1 < 1 that equilibrium is stable and that I +D has

strictly positive column sums. From A = I � D and the Neumann expansion we

have

A�1 = (I �D)�1 = I +
1X
n=1

(D)n =
1X
n=0

(I +D) (D)2n :

(D)2n � 0 for every n since D � 0. Lemma 2 below implies (I +D) (D)2n has

positive column sums for every n for which (D)2n � 0; and (I +D) (D)2n = 0 for

every n at which (D)2n = 0: Positive columns sums are obviously preserved under

addition, so it follows that A�1 has positive column sums. Therefore, market demand

is downward sloping.

(b) If kDk1 < 1 a similar argument shows that A 2 NIRS.
(c) x� is a �xed point of f if and only if it is a �xed point of dynamic system

(9). A �xed point is unique if it is globally asymptotically stable, so the result is a

consequence of Lemma 3 in Christensen and Jung (2012).

Lemma 2 Let X be an n� n matrix with nonnegative column sums. Let Y � 0 be
an n � n nonnegative matrix. Then W = XY has nonnegative column sums. If

X has at least one positive column sum and Y > 0; then W = XY has at least one

positive column sum.

Proof. Let X = (xij) ; Y = (yij) and W = (wij) : Since the column sums of X are

nonnegative
Pn

i=1 xik � 0; and Y is nonnegative, the jth column sum of W is

nX
i=1

wij =
nX
i=1

 
nX
k=1

xikykj

!
=

nX
k=1

nX
i=1

xikykj =
nX
k=1

 
nX
i=1

xik

!
ykj � 0:

The last inequality is strict if
Pn

i=1 xik > 0 and Y > 0:

Proof of Corollary 3. Order system (1) such that the �rst nA rows are the best

reply functions of the nA active agents. The remaining nI equations for the inactive

agents are xi = 0 in equilibrium. Then D can be partitioned as

D =

"
D11 D12

D21 D22

#
;

where D11 is an nA � nA; D12 is nA � nI ; D21 is nI � nA matrix and D22 is nI � nI :
Clearly, D21 = 0 and D22 = 0. Exponential stability in part (a) follows from the fact
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that the family of eigenvalues of D is the same as the union of families of eigenvalues

of D11 and D22 since D is upper block triangular. The comparative statics follow

from Theorem 5.
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