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Abstract 

 

We build a multi-agent model of endogenous technical change in which heterogeneous 

investments in patented knowledge generate Pareto-Levy and lognormal distributed 

returns to investment in research from very weak distributional assumptions. Firms 

produce a homogenous good and a public stock of knowledge accumulates from the 

expired patents of privately produced knowledge. Increasing returns to scale are 

derivative of endogenously produced technology, but the market remains competitive due 

to imperfect information and costly household search. The interaction of heterogeneous 

knowledge, research investment, revenues, and search outcomes across agents 

endogenously generates the empirically observed but seemingly idiosyncratic Pareto-

Levy and lognormal mixture distribution of market returns. These distributional 

characteristics have ramifications for endogenous growth models given the importance of 

extreme values and market leaders in technological advancement. Average growth rates 

in the model have a global maximum at a finite, non-zero patent length. The distribution 

of growth rates is characterized by “fat tails.” The variance of growth rates increases with 

patent length. 
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Theories of endogenous technical change built with knowledge serving as a non-rival 

input into productivity and, in turn, as a source of increasing returns to scale, have served 

to model exponential growth and offer a better understanding of disparate of rates of 

growth observed across countries (Grossman and Helpman 1994; Romer 1994). The 

capacity to cope with increasing returns to scale, however, motivated the abandonment of 

price taking perfect competition, and the allowance of market power within firms (Romer 

1990; Grossman and Helpman 1991; Aghion and Howitt 1992). It should not be 

surprising that, given this reliance on knowledge inputs and market power, that 

intellectual property rights, or patents, have become a major topic of exploration in 

theories of endogenous growth (Horowitz and Lai 1996; Futagami and Iwaisako 2003; 

O'Donoghue and Zweimüller 2004; Iwaisako and Futagami 2007).
1
 Models incorporating 

patents into theories of endogenous growth, however, have not accounted for the peculiar 

distributional properties of the returns to innovation. We offer an alternative modeling 

strategy that allows for endogenous technical change, is characterized by long run 

increasing returns to scale, and emerges a distribution of revenues across firms that is 

best characterized as a Pareto-Levy and lognormal mixture distribution, and is often 

dominated by a small number of extreme values. This peculiar mixture distribution is 

similar to those observed in patent revenue return research (Scherer, Harhoff et al. 2000; 

Silverberga and Verspage 2007).
2
   

 Patents bring the necessary market power to firms that seek to obtain monopoly 

rents from their excludable private knowledge. This excludable private knowledge, 

however, also engenders heterogeneity across firms that are all producing with differing 

knowledge inputs. Heterogeneous knowledge quickly leads to heterogeneity in 

productive capacity, marginal products of standard (rival) inputs, and prices. Such a 

world is considerably less tractable for traditional modeling, and is typically inhospitable 

to decentralized competition. The structural imposition of monopolistic competition in 

                                                           
1
 To varying degrees, the models proposed in this literature are built using the foundations laid out by 

Aghion and Howitt (1992), Grossman and Helpman (1991), and Judd (1985).  
2
 Mixed distributions with extreme values have also been offered as a tractable representation of Knightian 

uncertainty and a challenging environment for policy (Epstein and Wang 1994). 
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the form of a continuum of goods produced by firms returns us to more tractable territory, 

but comes at a cost. With a continuum of goods in demand, and each firm producing a 

unique good that cannot be perfectly substituted for by goods produced by competing 

firms, our potentially Schumpeterian landscape looks considerably less destructive.  

Imperfect substitution, long thought to be necessary to allow many firms to exist in an 

industry with increasing returns, attenuates the consequence of discoveries which would 

be explosive in a world with perfect substitutes.  The monopolistic competition model, 

governed by the Law of One Price, retains the representative firm by allowing for 

heterogeneous goods. We provide a model using the exact opposite: a set of 

heterogeneous firms competing to produce and sell a single homogenous good, each 

offering the good to consumers at their own unique price.   

 There is considerable evidence that the returns to research are highly skewed, 

with distributions dominated by extreme values. Research into these returns has used a 

variety of creative datasets, including citation records, initial public stock offerings 

(IPOs), and self-reported revenue returns to patents (Harhoff et al. 1998; Harhoff et al. 

1999).  The most appropriate statistical distribution for the characterization of the returns 

seems to be some combination of the lognormal and Pareto-Levy distributions (Scherer, 

Harhoff et al. 2000; Silverberga and Verspage 2007). The overall distribution within the 

empirical work is best characterized by a lognormal distribution with outliers in the upper 

tail. However, the upper tail of the distribution, particularly when looking at IPO data, is 

better characterized by the Pareto-Levy power law distribution. Such power law 

distributions are not unheard of in market competition and concentration data. Axtell 

(2001) finds that the size of firms, in terms of individuals employed, is Zipf distributed in 

the United States. Within power law distributions, the upper tail accounts for an 

extraordinary share of the distribution’s value. Models that account for growth derivative 

of technical innovation that leverage some form of market power stand to benefit from 

either including such features of the returns to research or, preferably, generating them 

endogenously (Luttmer 2007). Concerns about the importance of the distribution  of 

research outcomes, in particular of  the upper tail and outliers have been recently 
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expressed (Silverberga and Verspage 2007). As they note such Pareto power law 

distributions might not even have first moments, something which has severe 

implications for risk analysis.   

The aims of this paper are three-fold. First, we seek to build a model characterized 

by the long run increasing returns to scale and exponential growth properties of existing 

models of endogenous technical change and growth. Second, we abandon the traditional 

monopolistic competition model, and replace it with a model of competitive firms 

producing a homogenous good in a market characterized by price dispersion. Third, we 

simulate the model under a variety of parameterizations and examine the distributional 

properties of returns to investment in research. In doing so, we find that the distributions 

of returns to research in our model take on a mixture character, taking on a lognormal 

share in the lower quartiles while exhibiting Pareto-Levy power law properties in the 

upper quartiles. We also test the impact of the key parameters of the model, patent length 

and search costs, on average growth rates across large batches of simulation experiments.   

 

2 The Model 

 

We construct a multi-agent model of endogenous growth that includes elements 

prominent in  O’Donoghue and Zweimüller (2004) and Iwaisako and Futagami (2007). 

Within this model we create a market composed of heterogeneous, individually 

autonomous households and firms that make decisions in accordance with their type, 

unique information set and personal history, and the rules that govern their behavior. Like 

the model presented in O’Donoghue and Zweimüller (2004), our model is composed of 

two sectors, one in which technology investment and innovation are possible and one in 

which innovation is not possible, with inputs of only labor and capital.  Individual, 

technology enabled, firms produce a homogenous quality primary good (q) while an 

aggregated non-technical sector (NTS) produces a secondary good (x). Households 

supply labor to both sectors, collect wages, earn uniform returns to shares of rents paid to 

capital, and maximize a universal utility function by purchasing a combination of x and q. 
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The model is always composed of a fixed quantity of households, and as such growth 

within the model is not dependent on the exogenous increase in labor.
3
 

 Time in the model occurs in discrete steps and substeps. Sets of agents (organized 

by type) are activated in a fixed schedule, but within each set, agents are activated in a 

randomized order. While firms are effectively acting simultaneously, households are not. 

A household may purchase the last of a firm’s inventory or fill its final hiring slot. 

Potential order effects add  to the complexity of model outcomes, but constant 

randomizing of activation order prevents model artifacts (Axtell 2001).  

 While agents, within their types, are homogenous in capacity, exogenous 

parameterization, and behavioral rules, they each face a world with costly, imperfect, and 

heterogeneous information. Households search for both lower prices and higher wages, 

seeking to maximize their consumptive bundle, while being constrained by a finite 

amount of time to be split between wage earning labor and search, and the ensuing time 

expenditures associated with searching the market. Firms, on the other hand, face the 

uncertainty of a research process that may or may not yield a competitive increase in 

excludable knowledge as well as a marketplace of consumers that may or may not 

discover them as a low price provider of goods. They respond to these uncertainties by 

making decisions regarding research investment predicated on simple heuristics and 

limited information. Given the complexity of the relationships between households and 

firms, the non-technology sector (NTS) is governed by a number of simplifying 

assumptions that grant the model additional tractability. The NTS operates as a single 

agent in the model, hires all who are willing to work for its offered wage, and always 

meets the sum of its market orders.  

 The labor supply in the model is fixed, but capital grows as a set fraction of the 

previous time steps’s total productivity. Growth, nonetheless, is driven by technical 

innovation. As within a Schumpeterian model of creative destruction (Aghion and Howitt 

1992), innovation is motivated by desire to both gain monopoly rents and avoid 

bankruptcy. In this manner both the carrot and the stick are applied every step of the 

                                                           
3
 For a discussion of scale dependent vs. scale independent models of endogenous growth, see Eicher and 

Turnovsky  (1999) 
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model: success in research and development leads to lower production costs, greater 

rents, and more customers, whereas failure leads to higher prices, fewer customers, and 

brings the firm one step closer to closing its doors. The prospect of permanent failure is 

one of the salient features of working with a competitive market for a homogenous good. 

In a monopolistic competition model, where goods exist along a continuum, there is no 

prospect for complete failure to attract customers. With agents searching over a set of 

producers offering a homogenous good, a firm with inferior productive technology will 

be unable to offer a competitive price and will be more likely to be passed over by 

potential customers. This market remains competitive
4
, as opposed to collapsing to 

monopoly, because of price dispersion and costly search, which allows second-best firms 

to attract sufficient customers to retain positive profits, or at the very least manageable 

losses that can endured in the short run (Levy and Makowsky 2010). Further, the expiring 

of patents and the subsequent sharing of previously private knowledge allows for 

turnover in who stands as the technology leader (Grossman and Helpman 1991). In 

reality, it is not just profit, but the prospect of losses and bankruptcy that motivates 

investment in research and development.   

 In contrast to traditional general equilibrium models, there is no social planner 

maximizing agent utility, nor a Walrasian auctioneer finding market clearing prices. Each 

agent, governed by type (firm, household) specific rules, is autonomous. From the 

thousands of interacting, decision-making agents emerge aggregate trends in research 

investment, technology, growth, wages, profits, and market concentration.  Agents are 

myopic, backward looking, and absent any sophisticated strategy. They are governed by a 

strictly bounded rationality and costly information, but nonetheless manage to prosper in 

what are often rapidly growing economies.  

 

2.1 The Multi-Agent Computational Model 

 

                                                           
4
 In contrast to the bulk of the existing literature, Hellwig and Irme (2001) build a general equilibrium 

model of endogenous technical change that includes competitive markets, though their unique equilibrium 

is characterized by a low steady-state  growth rate. 
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The model is composed of two vectors of agents, households 

(1) 
 [1,2,... ]H n

i H
 

and firms     

 

(2) 
 [1,2,... ]F m

j F
  

 

where each household (i) purchases j

iq
 
units from the firm, *

ij , offering the lowest price 

known to her during time step t. All variables that are not exogenously set vary across 

time steps. For ease of explication, we will not include t as a subscript except when 

previous time steps (t - 1) are relevant.  

Firms produce the primary good, jQ , using inputs of labor, Lj, capital, Kj, and 

knowledge , Aj, where knowledge is composed of public, G, and private, Rj, knowledge:    

 

(3) 
           j j j j

j j

Q A K L j

A G R  

subject to the costs of production, Cj, including the wages, wj, paid to employees; rent 

paid to capital, r, and the investment in research and development, Sj. 

(4)      

             j j j j j

j j j j

C w L rK S j

p Q C  

Profits, π, are a function of Qj sold at price, pj, and Cj.  Firms post unique prices in 

the market equal to lagged AC, such that 
, , 1j t j tp AC . Each firm also posts its own 

wage in the labor market in the hopes of attracting prospective employees. Firms set their 

wages equal to the monetized marginal product of labor from the previous turn (

, 1MPL  j tp 1):  

(5)    

1

, , 1 , 1 , 1            j t j t j t j tw K L p j
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Given this wage rate, firms establish a maximum number of employees they are willing 

to employ by engaging in standard cost minimization of the production function given
5
 

, 1( , , , , , , )j j j j t j jC K L Q A w r  

such that
1

max

, 1j j t jL Q A r w  . 

During each step firms engage in research from which knowledge returns are 

uncertain, generating a quantity of private knowledge, or patent,
,j ty  that is temporarily 

excludable for Φ time steps, and contributes to a summed portfolio of private knowledge 

stocks,
1

, ,

0

j t j tR y . The process of research and development is modeled as an 

exponential probability function, dependent on the firm’s investment, Sj , its current 

portfolio of private knowledge, Rj,t, and the existing stock of public knowledge, Gt:  

(6)    
, , 1

, 1

log( )            
j

j t j t

t j t

S
y R j

G R
 

where Z is a unit rectangular variate. The ratio of investment 
jS  to private knowledge 

created with each patent, 
,j ty , is declining as the existing stock of knowledge, 

, 1t j tG R , 

grows. This choice to model the costs of innovation as increasing with the existing stock 

of knowledge is based on the empirical observation that the costs of patents have been 

increasing over time (Kortum 1993). Firms choose unique research investments 
jS  equal 

to their investment from the previous turn adjusted by factor χ, where  

(7)

     

, , 1 ,

, , 1 ,

, , 1 1 2

, , 1 1 2

           

where if
1  

j t j t j t

j t j t j t

j t j t t t

j t j t t t

S TR j

 

This research investment adjustment rule entails a simple profit seeking heuristic on 

behalf of the firm, with which each individual firm gropes towards an investment 

                                                           
5
 If a firm fails to sell a single unit of q, but does not go out of business, they use the mean qj among firms 

still in business and use that to establish an average cost and marginal product for setting their price and 

wage.  
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procedure that increases profits. The increment of change, 0t , is exogenously set 

parameter uniform across firms. Firms myopically grope towards greater profits, 

switching directions whenever their previous turn resulted in reduced profits.  

Each firm’s stock of private knowledge, Rj,t, is a rolling portfolio of patented 

knowledge. Each step, the oldest patent, yj,t-Φ, expires. The expired patent of greatest 

magnitude is added to the public knowledge stock, 
1 1, ,max ,...t t t m tG G y y . 

Research results in more efficient production that is rewarded by greater profits and 

greater prospects for long run survival in the marketplace. This, in turn, incentivizes the 

long run contribution to the public stock of knowledge and ideas in the form of expired 

patents which lead to long run growth. At the same time, the rolling expiration of patents 

allows for turnover in private knowledge leadership at any given time step. 

Once a firm has conducted its research, set its price and wage, and hired its 

employees, it can establish a profit maximizing quantity to produce and sell. Capital, K, 

in the model is available from exogenous pool at price r(Qt-1, Ψ), where Ψ is a fraction of 

total productivity in the model from the previous time step, and r() is the marginal 

product of the said fraction in the previous time step. The profit maximizing quantity to 

be sold is 

1

max 1 1( )j j j jq A L L p A r . 

Agent search occurs within each time step t, in sub-steps τ=1...m where each 

increment of τ represents an act of search by the agent.
6
 Households first search over the 

set of wages offered by firms, then search over the set of prices posted for q. Their search 

activities are governed by simple income maximizing  and cost  minimizing search functions 

based on a desire to continue searching so long as the expected increase in the highest known 

wage, 
*

iw , or decreases in the lowest known price,
*

ip , will result in a net increase in purchasing 

capacity given the cost of an additional sub-step of search, iw , where ς is the amount of an 

agent’s time endowment expended by an act of search. In both wage and price search, the 

decision variable is the number of search actions, τ, that constitute the fixed sample size 

                                                           
6
 There are m firms, and thus m prices over which to potentially search. If the cost of a unit of search, ∆h, 

equaled zero, all agents would continue search until τ equaled m. 
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that households decide prior to the first discovered price. Both wage and price search 

result in a fixed sample size. Households assume a non-degenerate uniform distribution of 

wages F(w) on [ , ]w w and  maximize the expected total income (highest found wage earned over 

the time remaining after search) .    

(12)   , 1( ) (1 ) ( )             
w

i
w

E M c w F w dw i  

Households similarly assume a non-degenerate distribution of prices F(p) on [ , ]p p and  

minimize the expected total cost (cost of purchasing qt-1 plus cost of search) .    

(13)   , 1 , 1( ) ( )             
p

i i t
p

E C q p F p dp i  

For the sake of simplicity, households will assume the center of the price and wage 

distributions are simply the wage or price they chose the previous time step (

* *

, 1 , 1

1 3
;   ,

2 2
i i t i i ta a a a a w p ). Additionally, the wage paid by the NTS is known to 

each household without cost.  

Each household i searches over the wage set Θ, where Θi,τ is the subset of wages 

known to household i  after τ search efforts. 
 

(8)

     

1

,

*

,

... ,

max             

m NTS

i

j j j

i i i i

w w w

w w w i

 

In addition to their wage, each household receives a uniform dividend, d, of the rent 

outlaid by firms and the NTS to capital inputs and any positive profits accumulated by 

firms.  

After searching for a wage, each household i then searches over the price set Ω, 

where Ωi,τ is the subset of prices known to household i after τ search efforts. 
 

(9)

  

1

,

*

,

...

min             

m

i

j j j

i i i i

p p

p p p i
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Once households have executed their searches and found a lowest known price and 

highest known wage, they maximize a constant elasticity of substitution (CES) utility 

function, 

(10)     
1/( )i i iU q x . 

 For a given wage rate and price, the optimal quantities of q and x are 

(11) 

    

1 1* 1 1

1 1* 1 1

1

1

i

i

q p M p

x M p
 

Where the total income of the household, Mi, is a function of the household’s wage, the number 

of sub steps spent searching, and the costs of search, ς, and its dividend from capital rents and 

firm profits, d, such that (1 )i i iM w d  

The non-technical sector (NTS) acts as a single agent. It sets the price for x, η, 

price based on the average cost of production from the previous time step 

1

1 1

n z
NTS

t h z

h b

C x x . The NTS pays a wage to its employees equal to the marginal 

product of labor from the previous step, 
1

, , 1 , 1 , 1NTS t NTS t NTS t NTS tw K L p
. 
 

At the end of each step, all firms are evaluated for potential bankruptcy. All firms 

for which costs exceed revenues (πj < 0) must borrow funds to remain solvent. This debt 

accumulates across steps. Bankruptcy occurs when accumulated debt exceeds the limit of 

B,  

(14)     
, 0 ,max( ... )j t j tB  

B is a function of the greatest profits previously realized by any firm in a single step, 

adjusted by an exogenous multiplier, Γ. 

 

2.2 Simulation Steps and Sub-step Ordering 
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Our model is characterized by a schedule of agent decisions and model events. This 

schedule plays out in a series of steps and sub-steps.
7
 A run of the model is constituted by 

an initialization (t = 0) followed by a set number of model steps (t=1…T), during which 

every agent is activated in random order, as arranged by the model sub-steps. The sub-

steps are ordered as follows: 

1) Each firm, j=1…m, sets its offered wage (see Equation 5) and its offered price for 

primary goods. 

2) All expired patents are made public; the largest patent value is added to the 

cumulative stock of public knowledge. All sub-superior knowledge disappears.    

3) Each firm conducts research (see Equation 6).  

4) The NTS sets both its offered wage and the price for secondary goods.  

5) Households, i = 1…n, are activated in random order and execute τ searches over 

the set of all available wages. Households are always aware (without cost) of the 

NTS wage. Once they have decided on their fixed sample size, the first wage in 

their discovery set is their employer from the previous time step (see Equation 8).  

6) Given the fruits of their research investment, their posted price and wages, the 

price of capital, and the number of employees they were able to hire, firms 

establish a profit-maximizing limit to the amount of the primary good they will 

produce.  

7) Households are activated in random order and execute τ searches over the set of 

all available prices. Once they have decided on their fixed sample size, the first 

price in their discovery set is their seller from the previous time step (see Equation 

9). Once search is concluded, the household maximizes its utility function, 

choosing an optimal bundle of q and x. If the firm offering the lowest known price 

to the household is unable to fulfill the entire desired quantity of q, the household 

purchases the remaining amount from the firm with the second lowest price firm. 

For tractability, the household will not seek out a third firm if the quantity desired 

                                                           
7
 The model is written in Java using the MASON agent modeling library (Luke et al. 2005). The step/sub-

step construct is built into the MASON model scheduling system.   
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is still not met. Once a firm has orders for max

j jq q , it is withdrawn from the set 

of unknown prices Ω. 

8) Having received all of their market orders, firms will acquire the amount of 

capital necessary to produce 
jq  and fulfill all existing market orders. 

9) If a firm is unable to procure any market orders, it may go bankrupt. Bankruptcy 

results when a firm’s outstanding debt is greater than the quantity that is available 

in the commercial loan market (see equation 14). In the model simulations 

executed in this paper, firms were exempt from bankruptcy rules during the first 

ten simulation steps, allowing firms to adapt to initialized conditions.  

 

3 Simulation Results 

 

We ran the model under a variety of patent length and search cost parameterizations, with 

400 time steps constituting a run. In experiments where we simulate the model for a 

single run, we ran it with 4000 households and 200 firms. For larger batches where we 

made comparisons across runs, we ran it with 2000 households and 100 firms. The key 

exogenously set parameters are summarized in Table 1.
8
  

Our emphasis, in this paper, is on the distributional properties that are observable 

across firms. These properties, however, are of limited interest if they do not occur in a 

model of endogenous, exponential growth. Figure 1 plots log Q, where jQ q , over 

time in a single run of the model. All firms produce the same good, price differences at 

any time tick the model are simply the consequences of positive search costs and 

technology differences,  so there is no particular merit to working with “real” output.   

 

 

                                                           
8
Model results are, unsurprisingly, sensitive to the specification of γ (the output elasticity of Aj) and Γ (the 

maximum debt firms can take on). This sensitivity is the result of their influence on market concentration. 

Specifically, large values of γ and small values of Γ result in faster rates of attrition, driving the model 

towards monopoly.  
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Table 1 Model Parameters 

Parameter Context/Related Function Value 

M Starting number of firms 100, 200 

N Number of customers 2000, 4000 

α, β ( )j j j jQ G R K L  0.5 

γ ( )j j j jQ G R K L  0.15 

λ 
1/( )i i iU q x  -0.1 

Gt=0 Initial public stock 1 

Γ Loanable funds multiplier 5 

Ψ r(Qt-1, Ψ) 0.05 

, 0j t
 

, , 1 ,j t j t j t
 0.002 

ς
†
 Search cost [0.00001, 0.0001]

 

† 
The total sub step time endowment for an agent is 1. As such when search 

costs, ς, equal 0.00005, that is equivalent of 0.005% of their time endowment, 

meaning it takes 0.005% of an agent’s sub step time endowment to engage in 

another act of search.  

 

Tracking the growth of log Q over time, we observe two distinct periods. In the 

early time steps of the run, we see an “organizational” period in the model, which 

typically (but not always) concludes within the first 50 steps, within which growth is 

erratic, often characterized by large swings up and down, as firms grope towards 

profitable strategies and unprofitable firms go bankrupt and exit the model. Eventually 

the model settles into steady growth trend, which is ostensibly a random walk, but does 

sometimes exhibit small, semi-regular cycles. Growth observed in the model is 

exponential and consistent, and largely parameter insensitive (given minimal returns to 

research and elasticities of output). Given this type of growth, we can proceed to focus on 

the distributional properties observed within the set of active firms.  
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Figure 1 Log Q over Time. Patent length = 12, Search Costs = 0.01%. The model was initiated with 

4000 households and 200 firms. 

 

3.2 Outcomes Across Firms Within a Single Run 

 

Firms in our model are homogeneous ex ante and heterogeneous ex post. Given the 

randomness of research outcomes and cost constraints faced by searching households, 

each firm experiences its own unique history of research outcomes, sales, and 

profitability. Firms are confronted with two levels of uncertainty: research uncertainty 

and commercial uncertainty.
9
 They do not know the stock of excludable knowledge that 

their research investment will bear, nor do they know whether customers will 

successfully find them even if they are able offer a relatively low price. These 

                                                           
9
 This is not unlike the three types of uncertainty (technical, commercial, and financial)  laid out in Scherer 

et al. (2000) 
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uncertainties result in differing research investments, private knowledge stocks, posted 

prices, qj sold, and revenues generated.  

Research investment (as a percentage of revenues), χj, is the manner in which the 

individual firms most directly respond to their own unique history.  In Figure 2 we 

present the histograms of the distributions of χj  across all firms at time step 400 in 

several runs of the model, parameterized with different patent lengths and search costs. 

As is expected, firms are on average investing more when patents last longer. Perhaps 

more interesting, however, is that we observe a far greater variety of investment rates, 

including much larger ones, under higher search costs.  When search costs are very low, 

households sample a larger fraction of the offered prices, and their purchasing of goods 

will more directly follow the distribution of knowledge and prices. When search costs are 

higher, however, there is greater randomness in the model. The correlation between sales 

and prices is far murkier when search costs are high, and in turn firms have vastly 

different experiences in their personally observed connection between research 

investment and profit. Greater variety of experienced histories leads to a greater variety 

of firm behavior. 

Figure 3 presents histograms of logged total revenue, TRj, across all firms at time 

step 400 in several runs of the model, parameterized with different patent lengths and 

search costs. The symmetry of log TRj in many of the histograms in Figure 3 gives the 

appearance of a distribution that is potentially log normal. In fact, the distributions of log 

TRj passes the Shapiro-Wilk normality test at the better than 1% level (p<0.01 for all 

fifteen runs, see Table 2). While the bulk of the distributions are likely lognormal, there 

are several visual characteristics that warrant interest. Many of the distributions have 

prominent outliers, especially in the upper tail, and exhibit fat tails more generally. 

Twelve of the fifteen histograms qualify as leptokurtotic, six of which have a raw 

kurtosis greater than 6.0.  
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Figure 2. Histograms of research investment percentage across firms, organized by Patent Length (4 

to 20, vertically) and Search Cost (0.001%, 0.005%, and 0.01%, horizontally), at t = 400. Each 

subfigure is from a single run of the model.  

 

 

 

 

 

 

 

Search Cost = 0.001% Search Cost = 0.005% Search Cost = 0.01% 
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PL = 12 

PL = 16 

PL = 20 
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Figure 3 Distribution of Total Revenue, organized by Patent Length (4 to 20, vertically) and Search 

Cost (0.001%, 0.005%, and 0.01%, horizontally), at t = 400. Each subfigure is from a single run of 

the model.  

 

In Figure 4 we chart the rank, N, of each observation, where the rank can be 

interpreted as number of other observations within the same model simulation run that 

are of equal or greater value than TRj at step t = 400, using data from the single 

simulation run with  patent length of 16 and  search costs of 0.005% .  The shape of the 

results in Figure 4 bears a strong resemblance to what was found by Scherer et al.  (2000) 

in their study of the value (in Deutschmarks) of  German patents from 1977 to 1995, 

duplicated here in Figure 5. In both the simulation and patent data, the lower observations 

within the distribution are concave to the origin, but the higher value observations take a 

more linear relationship between log value and log rank. A log-linear relationship 

between rank and value is indicative of a potential power law nature of the distribution of 

values. Both the simulation results and German patent return observations also include 

outliers significantly beyond the rest of the distribution.  

Search Cost = 0.001% Search Cost = 0.005% Search Cost = 0.01% 

PL = 4 

PL = 8 

PL = 12 

PL = 16 

PL = 20 
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 Fig 4 Log Rank over Log TR, Single Run of the Model. Patent length = 16, Search costs = 0.001% 

 

 

Figure 5 Rank over Estimated Value (Log-Log scale), from Scherer, Harhoff, et al. (2000) 
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Again, we simulated the model under a range of parameterizations. In Figure 6 we cluster 

similar charts of the Log Nj over Log TRj , with each graph charting the results at time 

step 400 of a single run of the model, under different combinations of patent length and 

search cost parameterizations (charts of simulations with longer patent lengths can be 

found in the appendix). The concave to the origin shape and increased linearity in the 

upper tail are fairly consistent. Further, the top ranked observation, and sometimes 

several more, is frequently a significant outlier from the rest of the observations.  

 

Search Cost = 0.001% Search Cost = 0.005% Search Cost = 0.01% PL = 4 

PL = 8 

PL = 12 

PL = 16 

PL = 20 

Figure 6 Log Rank over Log TR, organized by Patent Length (4 to 20, vertically) and Search Cost 

(0.001%, 0.005%, and 0.01%, horizontally), at t = 400. See Appendix Figure A for longer patent 

lengths. 
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Scherer, et al. (2000) analyzes the Pareto-Levy, or power law, distribution 

parameters of the patent data with simple regression analysis using the log-linear 

modeling function 

 

(15) 
(TR )

log log log TR

j

j

N k

N k
 

 

where N is the rank of the return on Investment observation, TRj is total revenue,  and k 

and ω are parameters. Absolute values of ω greater than or equal to one are indicative of 

a Pareto-Levy distribution. 

 In most of their patent data, Scherer et al do not find a log linear fit between TRj 

and rank across the full body of observations, instead finding that the bulk of the 

distribution is better characterized as lognormal. However, they do observe a much closer 

to log-linear fit in the upper tail of the data. We find similar results in our simulation data 

across a variety of parameterizations. The Shapiro-Wilk test results suggest that the full 

distributions appear to be lognormal. Simple ordinary least squares analysis of Pareto-

Levy model parameters, when regressed over the full distribution, offers further support, 

with values less than one. However, if we isolate the third and fourth quartiles of the 

distributions, the resulting coefficients correspond to a Pareto-Levy power law 

distribution.  The results of the ω slope parameter are included in Table 2 for the overall 

distribution (column 4), the third quartile (column 5) and in the fourth quartile (column 6) 

for each combination of patent length and search cost parameter combination tested. In 

all 15 model simulations, the regression of Pareto-Levy parameters on the full 

distribution resulted in slope coefficients less than one. Regression on the third quartile 

observations resulted in much larger slope coefficients, with  1 in four of the 

specifications. Regression on the fourth quartile observations produced slope coefficients 

 1 in six of the specifications. Of the fifteen specifications, eight produced  1 in 

at least one of the upper two quartiles.       
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  Examined in tandem, the plots from Figure 6 and the Pareto-Levy slope 

coefficients for the upper quartiles of the simulation distribution paint a telling picture. 

The plots can be visually broken down into three components. The first is the lower-

middle portion with a shallow slope and weakly concave shape. The second, is a steep, 

flat region usually in the upper-middle portion of the distribution. Third, but not always, 

is a small number of extreme values that represent significant outliers from the rest of the 

distribution. Even in the simulations whose upper quartiles did not have  1 , we can 

often visually identify a portion of the distribution characterized by significant steepness, 

with the strong possibility of Pareto-Levy characteristics. It is our view that considered 

together, the Shapiro-Wilks tests, Pareto-Levy coefficients, and general visual shape of 

the data plots, are evidence of a distributional pattern emergent from the model that is 

strikingly similar in character to that observed in the Scherer, et al. German patent data –

specifically a mixture of lognormal and Pareto-Levy distributions of revenues across 

firms accruing rents from temporarily excludable knowledge stocks.   
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Table 2 Log TR: Kurtosis, Shapiro-Wilk Tests, and Pareto-Levy Regression 

Coefficients at t=400 

   (1) (2)  (3) (4) (5) 

      OLS OLS OLS 

Patent 

 

Length 

Search  

Costs 
 Kurtosis* 

S-W 

(p 

value) 

  

 

3rd 

quartile 

 

4th 

quartile 

4 0.01%  4.05 < 0.01  0.399 0.788 0.468 

4 0.05%  4.28 < 0.01  0.228 1.011 1.591 

4 0.1%  3.46 < 0.01  0.256 0.565 1.863 

8 0.01%  6.90 < 0.01  0.497 1.158 0.699 

8 0.05%  3.67 < 0.01  0.281 0.616 1.465 

8 0.1%  2.06 < 0.01  0.077 0.061 0.200 

12 0.01%  7.99 < 0.01  0.349 0.617 1.041 

12 0.05%  4.83 < 0.01  0.287 0.555 1.866 

12 0.1%  6.35 < 0.01  0.08 0.081 0.067 

16 0.01%  6.81 < 0.01  0.281 1.351 1.222 

16 0.05%  2.21 < 0.01  0.07 0.036 0.197 

16 0.1%  9.02 < 0.01  0.114 0.262 0.081 

20 0.01%  7.24 < 0.01  0.519 1.074 0.634 

20 0.05%  2.30 < 0.01  0.068 0.077 0.135 

20 0.1%  2.06 < 0.01  0.069 0.037 0.298 

*Raw Kurtosis (kurtosis = 3.0 at normality). 

 

3.3 Growth Rates 

 

In the previous section and simulation experiment, we inspected the distributions of 

results across firms within single runs of the model, each with differing patent length and 

search cost parameterizations. In this section, we take a different approach, simulating the 

model thousands of times, and inspecting the how various outcome properties change. In 

turn, we are not looking at individual firms, but rather outcomes that are aggregated 

across all firms from each instantiation of the model. In this simulation experiment, we 

ran the model 4000 times, with 2000 households and 100 firms in each run, for 400 time 

steps in each run. All parameters besides patent length [1,2,…40] and search costs 

[0.001%, 0.002%,… 0.01%] are held constant and are identical to those reported in Table 

1. Our outcome of concern is the average growth of aggregate Q from step 200 to step 
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400 in the model. We are purposely allowing the model to settle into the “steady state” 

portion of its simulation history before tracking growth rates. Figure 7 shows the 

quadratic fits of the observations – average growth rates, mapped over patent length, 

color/shape coded by search cost. All quadratic fits are statistically significant at the 1% 

level (p < 0.01 for each regressor), which is not surprising given that we are modeling 

data from a simulation whose only varying parameter and its square are being used as 

regressors. In the lower four search cost parameterizations, average output is increasing, 

though at a decreasing rate, with patent length. At the highest search cost level (ς = 

0.01%), however, the impact of patent length has a global maximum in the interior of the 

parameter domain tested, declining at a significant rate beyond it. Futagami and Iwaisako 

(2003) arrived at a similar result  in their dynamic analysis of patents in their endogenous 

growth model, within which social welfare was maximized by patents with finite length 

(see also Horowitz and Lai 1996).   

 

 

Figure  7 Average Growth rate from t = 200 to t = 400 over Patent Length, organized by Search Cost. 

Search costs = 0.002% (red), 0.004% (orange), 0.006% (green), 0.008% (blue), and 0.0010% (black). 

Lines are quadratic regression fits over each search cost subset of observations.  N = 4000.  
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We are also interested in the distribution of outcomes from the model across 

multiple runs of the model. Specifically, we were interested in the consistency of growth 

outcomes from simulation to simulation under identical model parameterizations. To test 

this, we simulated model across different patent lengths, 1 to 40, and under two search 

cost paramterizations: low search costs (0.002%) and high search costs (0.01%). Each 

possible combination of patent length and search cost was simulated fifty times, with 

identical simulation parameters to the previous experiment (400 times steps, 100 firms, 

2000 households), resulting again in 4000 simulation runs. Each of the 80 sets of 50 

simulations resulted in a distribution of average growth rates from step 200 to step 400 in 

each simulation.
10

  

In Figure 8 we chart the eighty different observed mean average growth rates, as 

well as the variance and kurtosis of the distributions. In the first graph of Figure 8, we see 

that the mean of average growth rates follows patterns at the low and high search costs 

similar to what we observe in Figure 7.
11

 In the low search cost set of observations, the 

mean of average growth rates are increasing over the entire range of patent lengths. In the 

high search cost set of observations, there is again a global maximum in the interior of 

the patent lengths tested. 

The variance of average growth rates across simulations is increasing with patent 

length in both search cost parameterizations but is increasing at a much higher rate under 

low search costs. Even at the highest levels, however, the variance remains small relative 

to the means of the distributions.  The raw kurtosis of the individual distributions of 

average growth rates may in fact be the most interesting. The median kurtosis of the 

distributions was 3.19, almost exactly that of a normal distribution. However, in 

simulations with high search costs, the median kurtosis of these distributions was 10.55, 

                                                           

10
 Average growth rate =

1/200

, 400 , 201

1 1

1
m m

j t j t

j j

q q  

11
 We can also see in Figure 8 the often truly prodigious rates of growth in the model. It has been our 

experience that the model results remain salient and clear, despite our relatively limited size of 100 firms 

and 2000 customers, when growth is rapid. When using single runs, such as in earlier sections of the paper, 

we have the luxury of a larger agent sets. Running the model thousands of times per experiment is less 

practical with larger numbers of agents, however. Larger scale investigation remains for future research.   
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and often exceeded 40. In the high search cost runs, the correlation to patent length was 

U-shaped; the largest kurtosis distributions occurred under the highest and lowest patent 

lengths, while the lowest kurtosis distributions occurred when patents were of an 

intermediate length (Figure 8, lower right). Under low search costs, the effect of patent 

length on the kurtosis rates is greatly muted, and may even be the inverse. Longer patents 

in the model increase the mean growth rate, at least early on and up to a global 

maximum. Perhaps more importantly, however, both the highest and lowest patent 

lengths can  increase the possibility of extreme outcomes, dependent on search costs. 

This would appear to suggest the merits of patents of an intermediate (finite) length, 

which are not just increasing the mean rate of growth, but also its predictability. The 

extreme kurtosis of growth rates in the shortest parameter and longest patent length 

regimes suggests an extremely peaked distribution, with the majority of observations 

clustered around the middle, but also outliers exceptional in number and deviation from 

the mean. Growth rates within each individual simulated “history” in model are pulled 

from these fat-tailed distributions. In deference to Nicholas Taleb, “black swans” abound, 

particularly when search costs are high and secrets are either fleeting or forever.  
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4 Discussion 

 

The distribution of returns to research investment, based on our analysis, appears to be a 

mixture of a lognormal and the Pareto-Levy power law distribution. This especially 

curious mixture distribution is nowhere assumed in the model. The economic 

consequences of perfect substitution combined with positive search costs allow an 

occasional innovation to revolutionize the industry without creating a single firm. We 

have not attenuated the consequences of such an innovation by the ad hoc assumption of 

imperfect substitution.  The only distributional shapes assumed in the model are an 

exponential distribution of returns to dollars invested in research and the uniform price 

and wage distributions assumed by searching households. It is this conspicuous absence 

from the model structure that makes the emergence of this mechanically idiosyncratic and 

 

Figure 8. Distribution of average growth rates across 

runs from Steps 200 through 400, over Patent length. 

Clockwise from upper left: a) Mean of Growth Rates 

b) Variance of Growth Rates c) Kurtosis of Growth 

Rates. Quadratic fits are included in all subfigures.  

Two search costs parameterizations are charted: 

0.0002% (black/dashed/circles) and 0.001% 

(red/solid/triangles). Each observation is the 

mean/variance/kurtosis for a set of 50 runs. The 

graphs are the results from 4000 model simulations.  
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empirically observed distributional shape so compelling. Such a distribution is 

characterized both by its skewness and proclivity towards producing outliers that 

dominate the rest of the distribution. William Feller (1950) begins the elementary half of 

his celebrated pair of volumes on probability theory with distributions without moments. 

He demonstrates how an innocent looking process is likely to have a single event which 

is as large as the all the other events combined. He expresses his concern that we have to 

believe that something can happen before we see it: 

 

In practice such a phenomenon would be attributed to an "experimental 

error" or be discarded as "outlier." It is difficult to see what one does not 

expect to see. (Feller 1950, p. 91).   

 

 

In our account of endogenous technical change distributions without moments are not 

censored by our intuition. What might such an outlying event look like in technical 

change? Perhaps the electronic computer, but economic intuition is uncomfortable with 

the naïve question of asking what would 2010 GDP look like if we were to evaluate 

computational expenditures in 1950 prices (Nordhaus 2001).  We find it more tractable to 

simply trim out 1950 computational expenditures by putting them in 2010 prices.  

If we take the approach to Knightian uncertainty suggested by Epstein and Wang 

(1994) in which familiar distributions are mixed with something strange, then trimming 

“outliers” can take Knightian uncertainty and transform it into seemingly well-behaved 

risk.  Regardless of approach, the point remains that “outliers” are not observations that 

can be dismissed. Outliers are driving observed growth and are, in turn, the source of “fat 

tailed” distributions of growth observed in Figure 8. When an outlier event occurs, it 

changes the entire trajectory of the simulated economy. It is our opinion that models of 

endogenous growth would do well to account for such distributional properties, either in 

their assumptions or their outcomes (Silverberga and Verspage 2007). 

Thinking about models of industrial organization, in 1949 George Stigler saw 

something very remarkable in Edward  Chamberlin’s theory of monopolistic competition. 
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With the abolition of an “industry” there was no way to keep the “group” from being the 

whole of the economy: 

It is perfectly possible, on Chamberlin's picture of economic life, that the 

group contain only one firm, or, on the contrary, that it include all of the firms in 

the economy. This latter possibility can readily follow from the asymmetry of 

substitution relationships among firms: taking any one product as our point of 

departure, each substitute has in turn its substitutes, so that the adjacent cross-

elasticities may not diminish, and even increase, as we move farther away from 

the "base" firm in some technological or geographical sense. (Stigler 1949, p. 15) 

 

This property would suggest that a technological development in one firm could disrupt 

firms arbitrarily distant. This explosive general equilibrium property, however, was long 

seen as a defect in monopolistic competition which would be later tamed with a 

“preference for diversity” which kept firms safely in their niches. It was the tamed 

monopolistic competition models which would become the basis for models of increasing 

returns, 

 

5 Concluding Remarks 

 

It would be useful to extend and test the model in a computing environment that allowed 

for larger scale simulations. Given the importance of highly skewed distributions, larger 

agent pools could have important ramifications for growth rates and the incentive to 

participate in innovation races. Patents in our model are greatly simplified. Future work 

would benefit from introducing more sophisticated intellectual property rights, including 

both “breadth” and length, as well as a continuum of imitation and obsolescence. This 

paper is largely concerned with the unusual distributional characteristics of the returns to 

research and the need for their realization in endogenous technical change models.  More 

generally, the nature of the “optimal” patent length is given only cursory attention here, 

and would benefit from finer grain analysis in future work.  
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Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Search Cost = 0.01% Search Cost = 0.05% Search Cost = 0.1% PL= 24 

PL= 28 

PL = 32 

PL = 36 

PL = 40 

Figure A1. Log Rank over Log TR, organized by Patent Length (24 to 40, vertically) and Search Cost (0.1%, 

0.05%, and 0.1%, horizontally), at t = 400. 


