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Abstract

The goal of this study examines the quantitative implications of the Malmquist index

in a standard Real Business Cycle (RBC) model as a measure of technology shock.

To achieve this, the paper first investigates the empirical validity of the equivalence

proposition on the two technology shock measures: a relatively new Malmquist Index

and the predominant Solow residual. On the basis of permutation tests, this paper

shows the observational equivalence of the two measures. Then, the role of technology

shock measured by the Malmquist index in the RBC model is examined. The study

uncovers that the RBC model with the Malmquist index successfully replicates the

stylized U.S. business cycle features documented in the existing literature. Finally,

this paper discusses potential benefits of the Malmquist index in the business cycle

studies.
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1 Introduction

Most business cycle models predominantly use the Solow residual as a proxy for the measured

aggregate technology shock. While an alternative measure, the Malmquist index, has been

proved equivalent to the Solow residual by Caves, Christensen, and Diewert (1982) and used

in many micro productivity studies, existing macro business cycle studies have somehow

overlooked the Malmquist index.1 Indeed, there are very few business cycle studies based

on the Malmquist index, so the implications of such a measure are largely unknown. The

goal of this paper is to fill this gap. In this paper, the implications of technology shock

measured by the Malmquist index on the business cycle analysis are studied. In particular,

the Malmquist index is presented as an alternative proxy for the measured technology shock

and its quantitative effectiveness in a standard RBC model is evaluated. By doing so, this

paper attempts to open a new area of application of the Malmquist index in macroeconomics,

which might be one contribution of this paper.2

To appeal to the majority of business cycle researchers who are unfamiliar with the

Malmquist index, this paper first provides a systematic comparison of the two measures

by showing the observational equivalence3 of the Malmquist index and the Solow residual,

and then uses the Malmquist index when the quantitative effectiveness of a RBC model

is assessed. The findings suggest that the Malmquist index is equally good as the Solow

residual. Finally, this paper discusses potential benefits of the Malmquist index.

This paper contributes to the literature by (1) empirically comparing two aggregate tech-

nology shock measures, and (2) then studying the quantitative effectiveness of the Malmquist

1This study uses the terms the Solow residual and the Malmquist index to refer to aggregate technology
changes, not levels. The Solow residual is defined as changes in the Tönquvist indices, and the Malmquist
index, as the geometric mean of two Malmquist productivity indices.

2The first serious attempt was made by Färe, Grosskopf, Norris, and Zhang (1994) by using the Malmquist
index in empirical growth studies.

3Because the equivalence between the two productivity measures have been studied by Caves, et al.
(1982), this study focuses on observational equivalence, which roughly implies similarity.
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index in the standard RBC model.

Technology shocks play an important role in business cycle research because most RBC

models rely primarily on technology shocks to explain the fluctuations of key macroeconomic

variables in the absence of demand shocks.4 In fact, the most RBC models have been quite

successful to generate artificial data series, whose characteristics are similar to the ones from

the observed U.S. data.

Since the earliest equilibrium business cycle research conducted by Kydland and Prescott

(1982) and Long and Plosser (1983), Solow’s growth accounting approach has been mainly

used to characterize the nature of the technology shocks in the business cycle studies. As

Prescott (1986) pointed out, the stochastic components of the technology shocks measured

by the Solow residual were critical for the success of RBC models. Prescott (1986) made

a random walk assumption on the aggregate technology shocks, while King and Rebelo

(1999) assumed a trend-stationary process. Ireland (2001) considered both specifications

of technology shocks and argued in favor of the model of trend stationary shocks. Others,

including Kollmann (1996), Baxter and Crucini (1995), Backus, Kehoe, and Kydland (1992),

and Kehoe and Perri (2002) estimated the technology shock parameters in the international

business cycle context. All these estimates revealed a high degree of persistence and some

volatility of the technology shocks. While previous researchers have often made slightly

different assumptions about the stochastic characteristics about the technology shocks, they

have not made any considerable deviations from the traditional Solow’s growth accounting

framework when estimating the technology shocks.

In this paper, the Malmquist index is presented as an alternative technology shock mea-

4In fact, Ireland (2004) argued the demand shocks such as monetary policy shocks and markup shocks
were important in a basic New Keynesian model for explaining the fluctuations. However, his model like
the basic New Keynesian model does not have capital, which ignores the the potential propagation channel
that the technology shocks are important. Erceg, Guerrier, and Gust (2005) showed that technology shocks
play an important role in sticky-price (New Keynesian) model with variable capacity utilization, costs of
adjustment for investment, and habit formation in consumption.
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sure. Indeed, it could be potentially useful in business cycle studies when further decompo-

sitions of the technology shocks are needed to identify the sources of the shocks. According

to the framework studied by Färe, Grosskopf, Norris, and Zhang (1994), the aggregate tech-

nology shock measured by the Malmquist index can be easily decomposed into two parts:

technological change and efficiency change.5 Thus, the Malmquist index could be instru-

mental in studying the implications of the sources of the technology shocks in business cycle

studies. The last section of the paper will elaborate this point.

Despite its advantages, the Malmquist index has been overlooked by existing business

cycle researchers. This study begins with the presentation of a prototype RBC model and a

brief illustration of the key aspects of the model. Then, the technology shock parameters are

selected solely on the basis of the Malmquist index without relying on the Solow residual.

Prior to the parameterization of the technology shocks, this paper examines the empirical

validity of the equivalence proposition for the two technology shock measures (the Solow

residual and the Malmquist index) studied by Caves, et al. (1982). More specifically, this

study shows the observational equivalence of the Malmquist index and the Solow residual on

the basis of a non-parametric permutation tests. Finally, this study demonstrates that the

model of the Malmquist index successfully replicates the standard features of the observed

U.S. business cycles documented in the existing literature.

The intuition behind the main results is that the Malmquist index and the Solow residual

are observationally equivalent to an empirical researcher with data on aggregate output and

aggregate input because those two indices are constructed on the basis of the subset of the

equivalence conditions suggested by Caves, et al. (1982). While the equivalence should

hold when all the conditions are met, the results from the test indicate that even under the

less than full conditions often used in the literature, the measured Malmquist index and

5The Malmquist index can be decomposed into more than two parts. See Kumar and Russell (2003) for
details.
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the Solow residual are indistinguishable to the empirical researcher. In other words, the

Malmquist index can be empirically substitutable to the Solow residual. Thus, one can use

the Malmquist index whenever the Solow residual is used, including in the business cycle

analysis.

The rest of this paper is organized as follows. In the next section a model economy

is presented. Section 3 provides a brief background of the equivalence proposition of the

two aggregate technology shock measures and then presents a testing procedure for the

observational equivalence. Section 4 quantitatively evaluates the model. Section 5 discusses

possible extensions and application of this study and concludes.

2 Model

This study begins with outlining a standard RBC model, whose structure is similar to the

simplified version of the one use by King, Plosser, and Rebelo (1988) .

2.1 The environment

The economy has a large number of identical households whose preferences are specified as

follows:

U(Ct, Nt) =
C1−γ

t − 1

1 − γ
N−η

t ,

where Ct is the consumption, Nt is the labor, γ governs the intertemporal elasticity of

consumption, and η is the parameter of the labor supply (η > 0).

According to King, et al. (1988), when consumption and leisure are additively separable,

γ = 1 is required to get a balanced growth path. To obtain a time separable utility function

between consumption and labor, this study assumes that the intertemporal elasticity of

consumption is equal to 1. Given the parameter value (γ = 1), the household problem
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becomes

E0

∞∑

t=0

βt{ln(Ct) − ηln(Nt)}, (1)

where β is the discount factor (0 < β < 1) and E0 denotes the expectation operator,

conditional on information available at time zero. The representative household is endowed

with one unit of time.

The output of the economy depends on the labor and capital inputs according to a

constant returns to scale production function. In particular, this study assumes a Cobb-

Douglas production function,

Yt = AtK
α
t (Nt)

1−α, (2)

where Yt is the output, Kt is the capital stock, Nt is the labor, and α is the capital share.

At is the technology shock. There are no adjustment costs associated with investment and

the capital stock accumulation equation is given by

Kt+1 = (1 − δ)Kt + It, (3)

where It is the investment and δ is the depreciation rate (0 < δ < 1). There is no government

in this economy and the output is used for either consumption or investment. Thus, the

resource constraint is given by

Yt = Ct + It. (4)

This study assumes that the aggregate productivity At is composed of a trend growth

component and a stochastic component. In particular, the law of motion governing At is

At = (1+g)tzt, where g is the average rate of labor-augmenting technological progress. More

specifically, ln(zt), the deviation of the natural logarithm of At from a linear deterministic
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trend, follows an AR(1) process.

ln(At) = t ln(1 + g) + ln(zt), (5)

and

ln(zt) = ρln(zt−1) + ǫt, (6)

where ǫt, the serially uncorrelated innovation has a mean zero and a standard deviation

σ > 0. In this specification, the persistence of the shock is denoted by −1 < ρ < 1 and the

size of the shock is measured by the volatility parameter σ.6

2.2 Competitive Equilibrium

A competitive equilibrium is defined as a sequence of choice variables (Yt, Ct, It, Kt, Nt, Rt)
∞

t=1,

wherein firms maximize their profits given their production technology, and households max-

imize their expected utilities subject to their budget constraints. In the equilibrium, all

markets are cleared and the resource constraint is binding.7

In general, a closed-form solution of the model is not easy to obtain, but an approximate

solution can be found based on a set of stationary variables. Thus, a stationary equilibrium

is often characterized by log-linearizing the key equations at the steady-state values.8 The

steady state is then completely described by the structural parameters of the model and the

technology shock parameters. In the absence of the shocks, the economy converges to the

steady-state growth path, in which key variables become constant over time.

6This implies that technology shock is trend stationary, which is consistent with what Ireland (2001)
found.

7The purpose of this section is to briefly present the underlying structure of the business cycle model.
Thus, the details of the necessary conditions and their associated derivations are not discussed here. For an
excellent survey of business cycle models in general, see King and Rebelo (1999).

8Before the log-linearizations, the logarithmic deviations of the variables from their steady state levels
are considered to transform the variables. For a solution technique, see Uhlig (1999).
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Once the equilibrium is computed, the model is quantitatively assessed by introducing

the technology shock. Usually, the standard RBC model is evaluated using the transition

dynamics of the model with the shock. Because the RBC model such as the one used in this

study, is, in general, lack of an internal propagation mechanism, the characteristics of the

shock are essential for the quantitative effectiveness of the model.

3 Measured Technology Shocks

Prior to the investigation of the behavior of RBC the model based on the Malmquist index,

this study compares two technology shock measures — the Solow residual and the Malmquist

index. While this paper is primarily interested in examining the quantitative effectiveness

of the Malmquist index in the RBC model, a careful comparison could provide a justifica-

tion for using the Malmquist index in the business cycle analysis, where Solow residual is

predominantly used.

3.1 Equivalence: Background

This section provides a brief background information about the Malmquist index. Caves, et

al. (1982) studied the economic theory behind these two productivity indices and showed

that the Malmquist index could be equal to the Solow residual under certain conditions.

First, to construct the Malmquist index, one needs to define an output distance function

in period t as Tt,

Tt(y, x) ≡ minω{ω : Gt(
y

ω
, x̂) ≤ x1}, (7)

where x̂ is the input vector excluding the first input x1, y is the output, and x1 = Gt(y, x̂)

is the input requirement function. The distance function measures the minimum ω required

to deflate the output y, given the levels of the output y and the other input x̂.
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Now, consider changes in technology in terms of the differences in maximum output,

given the input levels. Then, the Malmquist productivity index between period t and s

becomes

Mt(xs, xt, ys, yt) ≡
Tt(ys, xs)

Tt(yt, xt)
. (8)

Because Tt(yt, xt) = 1 based on the definition of the distance function, Equation (8) can be

rewritten as

Mt(xs, xt, ys, yt) = Tt(ys, xs) ≡ minω{ω : Gt(
ys

ω
, x̂s) ≤ x1

s}, (9)

where Mt(xs, xt, ys, yt) measures the minimal output deflation factor required to deflate the

output at time s so as to be on the production surface at time t, given the input vector of

the time s.

With this definition, this study considers two inputs (capital and labor) and one output

case. Following in Caves, et al. (1982), let lngt be a translog distance function, and then

assume that it is linearly homogenous in the input vector x and the output y. Then, the

Malmquist index is equivalent to the Solow residual and both measure changes in true

technology P ∗

t . To see this, 9

9For a detailed proof, see Caves, et al. (1982).
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Malmquist Index, P ∗

t

=

Geometric Mean of Malmquist Productivity Indices
︷ ︸︸ ︷

1

2
lnMt(xs, xt, ys, yt) +

1

2
lnMs(xs, xt, ys, yt) (10)

=
1

2
[lnTt(ys, xs) − lnTt(yt, xt)] +

1

2
[lnTs(ys, xs) − lnTs(yt, xt)] (11)

=
1

2
[lngt(ys, xs) − lngt(yt, xt)] +

1

2
[lngs(ys, xs) − lngs(yt, xt)] (12)

= {∇lnylngt(yt, xt) + ∇lnylngs(ys, xs)} · [lnys − lnyt]

+{∇lnxlngt(yt, xt) + ∇lnxlngs(ys, xs)} · [lnxs − lnxt] (13)

= (lnYs + α∗lnLs + (1 − α∗)lnKs) − (lnYt + α∗lnLt + (1 − α∗)lnKt)
︸ ︷︷ ︸

Changes in Törnqvist Indices

(14)

= Solow Residual, P ∗

t

where ∇lnylngt(yt, xt) and ∇lnxlngt(yt, xt) are column vectors of the partial derivatives of

lngt with respect to lny and lnx. α∗ is the average of labor share and x ≡ (L,K) for a two

input case (capital and labor).

As seen in Equations (10)—(14), the equivalence between the two measures require not

only the translog distance function but other conditions as well. In particular, Equation (11)

is obtained on the basis of the definition of the distance function and Equation (12) assumes

that the distance function T is a translog. Equation (13) is obtained by a translog identity,

and a quadratic identity.10 Equation (14) describes a two-input case with assumptions of

10In general, the second order input coefficients in the distance function are assumed constant over time.
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cost-minimization, revenue-maximization, and constant returns to scale.

3.2 Data and Measured Technology Shocks

3.2.1 Data

The sample of the study comprises data during the period from 1960 to 1995 for the U.S.

The data set is largely taken from Jorgensen and Yip (2001), who assembled a detailed data

set of conventional inputs and output of seven industrialized countries. This study considers

a single-output, two-input production technology. The output is measured by the real GDP

and the two inputs are labor hours and physical capital.

3.2.2 Constructing the Malmquist Index

The method used to construct the Malmquist index is mainly built on the framework studied

by Färe, et al. (1994). This study constructs the world technology frontier by using a non-

parametric frontier analysis in which each observation in the sample is compared to the

constructed technology frontier. The Malmquist index is then calculated. Rather than

specifying a particular aggregate production function, this study estimates the underlying

technology frontier by using the Data Envelopment Analysis (DEA).11 When solving a linear

programming problem, this study makes no assumptions regarding the functional form of the

reference technology. Thus, the present approach deviates from the framework suggested by

Caves, et al. (1982) without relying on the translog distance function. Once the technology

frontier is constructed, the Malmquist index (Pm,t) is obtained as in Equation (10).

See Diewert (1976) and Lau (1979) for details.
11To construct the technology frontier on basis of the DEA, data from at least two countries are required.

The efficiency calculations in this study are carried out using the Data Envelopment Analysis Program
software developed by Tim Coelli.
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3.2.3 Constructing the Solow residual

The Solow residual is constructed on the basis of the standard growth accounting framework

followed by Solow (1957) who considered a formula for total factor productivity (TFP) as a

discrete approximation to the continuous divisia index. This approach also deviates from the

framework suggested by Caves, et al. (1982) because it does not rely on the translog distance

function. From the production function described in Equation (2), the Solow residual (Ps,t)

can be constructed as in Equation (14).

3.3 Observational Equivalence

The equivalence conditions given by Caves, et al. (1982), considerably restrict empirical

applications. Indeed, it may be difficult for an empirical researcher to construct both the

technology shock measures using all the conditions required by the theory and to empirically

show the equivalence of the two measures. In order to investigate the empirical validity of

the equivalence, this study assumes that the measured technology shock contains a random

noise term ε. More specifically, in each period t,

Pi,t = P ∗

t + εi,t i = m, s, (15)

where Pi,t represents the measured technology shock for i, and P ∗

t (without a subscript i)

represents the true technology shock, which is common for both producibility measures. εi,t

is a random noise term. m and s represent the Malmquist index and the Solow residual,

respectively.

In this specification, both the Malmquist index and the Solow residual include the true

technology shock (P ∗

t ) and a random disturbance term (ε) as follows: Pm,t = P ∗

t + εm,t

for the Malmquist index; Ps,t = P ∗

t + εs,t for the Solow residual. The random disturbance
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term represents possible specification errors and other unobserved factors that could cause

discrepancies between the measured technology shock and the true technology shock. As

described in the previous section, this study deviates from the framework suggested by

Caves, et al. (1982) when it constructs the Malmquist index and the Solow residual. And

such deviation justifies the non-zero disturbance term, ε 6= 0. The equivalence of the two

technology shock measure should hold when εm,t = εs,t, which this study attempts to test.

To conduct a formal hypothesis test, this study further assumes that εi has a probability

distribution f(εi; θi) with a parameter θi, where i = m, s. In particular, U is defined as the

probability distribution for m and W is the probability distribution for s. Finally, this study

adopts Rothenberg’s (1971) definition of the observational equivalence as follows:

Definition: Two parameters θm and θs are said to be observationally equivalent

if U(P ; θm) = W (P ; θs) for all P ∈ R
n

3.3.1 Permutation Tests

In order to examine the observational equivalence, this study employs a non-parametric

permutation test, which generally requires fewer assumptions than traditional methods do.

No distributional assumptions are required for the test and the validity of the test depends

solely on the randomization. An appealing feature of the permutation test is that the mean,

the median, or any other test statistics can be used to obtain exact calculations of significance

levels.

This study follows Efron and Tibshirani’s (1993) algorithm to conduct the permutation

test. More specifically, let Pi,m and Pi,s be the ith observation of the Malmquist index and

the Solow residual respectively. An empirical researcher observes Pm = (P1,m, · · · , Pj,m) and

Ps = (P1,s, · · · , Pk,s), drawn from possibly different probability distributions U and W : j and

k represent the number of observations. The researcher wishes to test the null hypothesis
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Ho of no difference between U and W ,

Ho : U = W.

Ha : Ho is not true.

If Ho is true, there is no difference between the probabilistic behavior of Pm and Ps. Thus,

the two technology shock measures can be randomized. Under the null hypothesis, the

conditional distribution of the observations — given their combined ordered statistics — is

permutation invariant.12 In this case, a non-rejection of the null hypothesis implies that

the Malmquist index and the Solow residual are observationally equivalent to the empirical

researcher. Taking advantage of the permutation test, this study selects four different test

statistics φ = θm−θs: the mean difference, the median difference, the first quartile difference,

and the third quartile difference.

Using the resampling technique, this study considers 1,000 resamples, each of which is

divided into two groups.13 It then constructs the permutation distribution of the each test

statistic, φ̂. Under the null hypothesis, no statistic from the two groups should exhibit

any differences, that is φ = 0. Having observed φ̂∗ from the original data, the Achieved

Significance Level (ASL) of each permutation test (for φ̂∗ > 0 case) is computed as follows:

ˆASL = Prob(φ̂ ≥ φ̂∗) =
#(φ̂ ≥ φ̂∗)

(j + k)!/(j!k!)
, (16)

where # indicates the number of times.14 The smaller the value of the ASL, the stronger is

the evidence against the null hypothesis.

12For details about randomization tests, see Kennedy (1995) or Good (2000).
13This study considers 1,000 replications, which is the minimum number recommended by Efron and

Tibshirani (1993). In fact, the number of replications do not affect the main results of the study. The
permutation tests on the basis of 100,000 replications provide qualitatively very similar results.

14In most cases, the number of possible randomizations is considerably large ( 70!

35!×35!
= 1.1219 × 1020

combinations). Thus, this study uses the Monte Carlo methods to approximate the ASL.
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Table 1 presents the test results. The findings suggest that the measured technology

shocks by Malmquist index and the Solow residual are observationally equivalent. In par-

ticular, at 10% and 5% levels of significance, this study does not find statistically significant

evidence against the null hypothesis on the basis of the means, the medians, the first quar-

tiles, and the third quartiles.15 In addition, the conventional t-test also shows the same

result.

The results of those tests suggest that the observed differences between the two technology

shock measures, φ̂, may be negligible. In other words, the Malmquist index and the Solow

residual are observationally equivalent to an empirical researcher with data on the aggregate

output and aggregate input. As a consequence, the empirical validity of the equivalence

proposition for the two technology shock measures is assured.

4 Model Evaluations

While it is the Solow residual that is overwhelmingly used in most RBC models as a proxy

for measured technology shock, the observational equivalence shown in the previous section

suggests that the Malmquist index is empirically compatible to the Solow residual. With

this in mind, this paper evaluates the effectiveness of the RBC model described in Section 2.

In particular, this study compares the unconditional second moments of the observed data

with those of the series generated from the model. For this comparison, it examines the

impulse responses to the technology shock based on the Malmquist index along with those

based on the Solow residual.

15This is, in principle, consistent with what Van Biesebroeck (2006) documented using the firm level data
from Columbia and Zimbabwe. He showed different methods of measuring productivity (including those two
used in this study) produced similar productivity estimates.
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4.1 Calibration

The calibration of the structural parameters of the model follows the standard RBC litera-

ture. As in King and Rebelo (1999), the real return to capital is set to 6.5%, which equals to

the average annual real return to the S&P 500 so that the discount factor β becomes 0.9389.

The intertemporal elasticity substitution of consumption is set to 1. The annual depreciation

rate is assumed to be 10%, and the labor share is set to 64% as in Prescott (1986). Finally,

the representative household devotes 30% of its time endowment to the market.

For complete model evaluations, two aggregate technology shock parameters needs to be

selected: the persistence parameter ρ and the volatility parameter σ. To estimate them, this

study constructs two sets of the natural logarithm of At: one based on the Solow residual

and the other based on the Malmquist index. Then, as in King and Rebelo (1999), a linear

trend is fitted to the ln(At) to compute the trend growth rate g as shown in Equation (5).

Finally, using the residuals from this regression, estimates ρ and σ of ǫ are obtained.

The estimated persistence parameter of the technology shock based on the Malmquist

index ρM is 0.958 and the estimated volatility parameter σM is 1.629.16 The estimated

persistence parameter based on the Solow residual ρS is 0.958 and the estimated volatility

parameter σS is 1.629. The calibration of the model is summarized in Table 2.

As seen in Table 2, the persistence of the measured technology shock based on the

Malmquist index is slightly bigger than that based on the Solow residual. And the standard

deviation the measured technology shock based on the Malmquist index is slightly smaller

than that based on the Solow residual. Because the technology shock based on the Malmquist

index is more persistence, it is reasonable to have a smaller volatility of it. Overall, there

are no sizable differences between the two sets of aggregate productivity shock parameters.

16Because the technology shock parameters based on the Malmquist index have never been considered in
the RBC literature, there are no documented values to compare to. Nevertheless, they are not much different
from the other set of parameter values based on the Solow residual.
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Figure 1 plots the comparison of the two alternative measures.

4.2 Cyclical Behavior

In this section, the calibrated model is simulated by introducing technology shocks and its

effectiveness is evaluated on the basis of the second moments of the cyclical component of the

generated series. The cyclical part of each variable is obtained after the application of the

Hodrick-Prescott filter, which eliminates the smooth trend from the data. More specifically,

this study compares the second moments of the series generated from the model with those

of the observed data. Table 3 presents the results. Panels I, II, and III in Table 3 show

the standard deviations, their associated standard errors (only for the artificial series), the

relative standard deviations (to output), and the contemporaneous correlations (with output)

for the U.S. data and the artificial data obtained from the two models.

Panel II in Table 3 shows the second moments of the key variables generated from the

model based on the Malmquist index. First, the model economy successfully replicates the

key features of the observed data. The business cycle statistics are consistent with those

already documented in the existing literature. In the model economy, the most of the

variables fluctuates slightly less than those observed in the U.S. economy. The investment

generated in the model fluctuates much more than the output and the consumption in the

model economy is smoother than he output. In addition, consumption, investment, and

labor in the model economy are all procyclical; the contemporaneous correlation coefficients

between each key variable and the output are all greater than 0.97. Finally, the contribution

of the aggregate productivity to the output measured by the relative standard deviation is

approximately 70% in the model economy.17 As the standard model predicts, the aggregate

productivity is a major contributor to business cycles.

17On the basis of quarterly data, McGrattan (2005) documented that the average contribution of the
aggregate productivity to the output spectrum was about 70%, which is generally considered the upper
bound in the absence of other non-technology shocks in this line of research.
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As a benchmark case, the model based on the Solow residual is simulated; and except

for the frequency of data, the result is a textbook case of the RBC model. Panel III in

Table 3 presents the relevant statistics, which can be compared to those in Panel II. The

characteristics of the series generated from the model based on the Solow Residual are

very similar to those of the series based on the Malmquist index. The rankings of the

standard deviations and the extent of the relative standard deviations in the two models are

very similar. The standard errors of the second moments, which are computed using 1,000

simulations, indicate that the marginal differences between two sets of the point estimates

of the standard deviation could be the result of sampling errors. All the variables are

procyclical and the aggregate productivity accounts for approximately 68% of the movement

in the output.

4.3 Impulse Responses

The impulse responses further verify the quantitative effectiveness of the model based the

Malmquist index. Figure 2 shows the expected responses of key variables to a technology

shock, beginning from the steady-state level, where the aggregate technology increases by

1% in the initial period. The two sets of impulse responses reveal a remarkable resemblance

between these two models.

The results suggest that the RBC model based on the Malmquist index is successful

in replicating the results of the standard business cycle based on the Solow residual. An

increase in the aggregate technology increases the consumption demand on impact. However,

the consumption increases to a lesser extent than the output because the households want

to smooth their consumption. Thus, the households would save more in the early periods.

Consequently, investment increases. Finally, the employment increases with the aggregate

productivity shock because of substitution effects dominate. When the aggregate technology
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returns to its original level, the economy slowly scales down its excess capital stock. Figures

3–5 present additional impulse functions for these variables by providing direct comparisons

between two aggregate technology measures.

5 Discussions and Concluding Remarks

This paper presents an alternative method of choosing the aggregate technology shock pa-

rameters – without using the Solow residual – in a standard RBC model. By doing so, this

study seeks to evaluate a quantitative role of the Malmquist index in business cycle stud-

ies. Although the Malmquist index has certain advantages, few researchers have studied its

implications on the business cycle.

On the basis of permutation tests, this study first investigates the empirical validity of

the equivalence proposition on the two technology shock measures: it finds the observational

equivalence of the Malmquist index and the Solow residual. It then studies the role of

technology shocks in the RBC model based on the Malmquist index. The findings suggest

that the RBC model based on the Malmquist index is successful not only in generating U.S.-

like business cycles but also in producing results comparable to those of the RBC model based

on the Solow residual. Thus, the Malmquist index is as important as the Solow residual in

terms of its quantitative relevance to business cycle research.

The recent literature on the equilibrium business cycle goes beyond the initial framework

presented by Kydland and Presott (1982). Indeed, as seen in Parente and Prescott (2000) and

Lagos (2004), current research has started to examine the sources of variation in the aggregate

technology. While the main focus of the paper is to compare the Malmquist index with the

Solow residual, one could also examine the underpinnings of aggregate technology using the

Malmquist index under a more richer model setup than the one presented here, because the

Malmquist index, in principle, allows one to decompose technology shocks relatively easily.
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For instance, the Malmquist can be decomposed into two components: efficiency change (EC)

and technological change (TC). In other words, the Malmquist index measures technology

shocks relative to piece-wise linear frontier production functions simultaneously accounting

for efficiency change below the frontier function and shifts of the frontier function itself. To

see this,

Malmquistt,t+1(yt+1, xt+1, yt, xt) = EC · TC

where EC =
Tt+1(xt+1, yt+1)

Tt(xt, yt)
,

and TC =
[ Tt(xt+1, yt+1)

Tt+1(xt+1, yt+1)
×

Tt(xt, yt)

Tt+1(xt, yt)

] 1

2

In this decomposition, EC would be improvements in efficiency, which measures the dis-

tance of the production plan relative to the best production technology frontier. Thus, if

a researcher would like to introduce nominal or real frictions into the standard equilibrium

business cycle models, which would cause inefficiency within the economy, the Malmquist

index could be a useful tool to quantify the effects of the technology shocks and to study

implications of those frictions in the business cycle analysis. Such examples include short

run inefficiency caused by monopolistic competition in standard sticky price models as in

Woodford (2003); investment and capital adjustments costs causing sluggish adjustments

as in Edge (2007); costly reallocation producing uneven impacts of technology shocks as in

Shapiro and Ramey (1998), etc. For all these cases, the production plan of the economy

could be inside the best production technology frontier.18

Another area where the decomposition of the Malmquist index could potentially useful

would be the measurement issues associated with Solow residual as aggregate technology.

Deviating from the standard growth accounting approach, Basu, Fernald, and Kimball (2006)

18In fact, the equilibrium if exists, it could still be constrained efficient, where the constraints are imposed
by the model
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measured technology shocks based on a cost minimization, which controlled for imperfect

competition, varying utilization of capital and labor, and aggregation effects. And then

they called their technology measures as “purified technological progress” because they are

highly refined estimate of technology change, where all the “non-technology” components of

Solow residuals are netted out. Indeed, the documented that the cyclical behavior of the

purified technological progress were quite different from that of the traditional Solow residual.

They along with Gaĺı (1999) argued against the RBC model by looking at the relationship

between measured technology shocks and labor inputs.19 Interestingly, their findings are

consistent with sticky-price models, which non-technology shocks such as monetary shocks

are important on business cycle. In this line of research, the role of measured technology

shocks on the business cycle has been a deciding criteria for the model selection, between

the RBC models and the sticky-price models. Because the measured technology shocks play

critical roles in this debate, alternative technology shock measure, the Malmquist index and

its decompositions could potentially help to reconcile different views among business cycle

researchers.20

While it has been about 25 years since the new methods proposed by Kydland and

Prescott (1982), there are still open questions on the role of technology shocks on the business

cycles. And the findings of this study could provide another angle to look at the technology

shocks in the RBC model and could open the door to exciting further business cycle research

based on the Malmquist index. The paper leaves the unsolved issues for future research.

19Basu et al. (2006) found that in the short run, technology improvements reduce input use, which is
inconsistent with the prediction made by the standard RBC model. Gaĺı (1999), on the other hand, used a
long-run restriction on a structural vector autoregression (SVAR) to find the same conclusion.

20See also Francis and Ramey (2005), Christiano, Eichembaum, and Vigfusson (2003) and Chari, Kehoe,
and McGrattan (2007) for on-going debates on the role of technology based on SVAR with the long-run
restrictions.
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Table 1: Observational Equivalence Test Results

Permutation Tests (ASLs) t-test (P-value)

Test Statistics Mean Median 1st Q 3rd Q Mean

0.383 0.432 0.653 0.623 0.743

Note: The results are based on the two-tailed tests. ASL stands for the achieved significance level. 1st Q
and 3rd Q represent the first quartile and the third quartile, respectively. The permutation tests are based
on 1,000 replications.
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Table 2: Calibration Summary

Parameters Value Interpretation

β 0.939 Subjective Discount Rate

δ 0.100 Depreciation Rate of Capital

R̄ 1.065 Real Return to Capital

η 1.000 Intertemporal substitution

N̄ 0.300 Steady State Employment

Ā 1.000 Scale Parameter of Aggregate Productivity

α 0.360 Share of Capital

Malmquist Index

ρM 0.958 Persistence Parameter

σM 1.629 Volatility Parameter

Solow Residual

ρS 0.928 Persistence Parameter

σS 1.759 Volatility Parameter
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Table 3: Key Business Cycle Statistics

Variables St. Dev Rel. St. Dev Corr with y

Panel I
(U.S. Data)

y 2.00 1.00 1.00
c 1.77 0.89 0.88
i 7.92 3.96 0.81
n 1.79 0.90 0.88

AS 1.71 0.86 0.71
AM 1.55 0.78 0.59

Panel II
(Model with Malmquist Index) S.E.

y 1.44 0.098 1.00 1.00
c 0.71 0.052 0.49 0.97
i 4.17 0.282 2.89 0.99
n 0.76 0.052 0.52 0.97

AM 1.01 0.069 0.70 1.00

Panel III
(Model with Solow Residual) S.E.

y 1.64 0.109 1.00 1.00
c 0.76 0.053 0.49 0.96
i 5.00 0.330 3.04 0.99
n 0.94 0.019 0.57 0.97

AS 1.11 0.074 0.68 1.00

Note: All variables are in logarithms and have been de-trended with the Hodrick-Prescott filter. y is the
per capita output, c is the per capita consumption, i is the per capita investment, l is the per capita hours,
AM is the level of aggregate productivity based on the Malmquist index, and AS is the level of aggregate
productivity based on the Solow residual. St. Dev in the second column stands for the standard deviation.
S.E in the third column in Panels II and III stands for the standard error of the estimated standard deviation,
which is computed on the basis of 1,000 simulations. Rel. St. Dev in the fourth column stands for the relative
standard deviation, which is computed as a ratio of the standard deviation of each variable to the standard
deviation of the output. Corr with y in the last column presents the contemporaneous correlations of each
variable with the output.
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Figure 1: Solow Residual and Malmquist Index: The first plot represents the aggregate productivity levels

(normalized at the beginning of the period) and the second plot represents growth rates. A value greater

than one indicates a positive growth from period t to period t+1. A value less than one indicates a negative

growth from period t to period t + 1.
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Figure 2: Impulse Responses of Output and Consumption to a Positive 1% Shock in Aggregate Technology.

The upper (output) and the lower (consumption) left plots are based on the Malmquist index and the upper

(output) and the lower (consumption) right plots are based on the Solow residual.
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Figure 3: Impulse Responses of Capital and Investment to a Positive 1% Shock in Aggregate Technology.

The upper (capital) and the lower (investment) left plots are based on the Malmquist index and the upper

(capital) and the lower (investment) right plots are based on the Solow residual.
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Figure 4: Impulse Responses of Labor and Aggregate Technology to a Positive 1% Shock in Aggregate

Technology. The upper (labor) and the lower (technology) left plots are based on the Malmquist index and

the upper (labor) and the lower (technology) right plots are based on the Solow residual.
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