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Abstract

We study the spread of COVID-19 infections and deaths by county poverty level in
the US. In the beginning of the pandemic, counties with either very low poverty levels or
very high poverty levels reported the highest numbers of cases. A U-shaped relationship
prevails for counties with high population density while among counties with low popula-
tion density, only poorer counties report high incidence rates of COVID-19. Second, we
discuss the pattern of infections spreading from higher to lower income counties. Third,
we show that stay-at-home mandates caused significantly higher reductions in mobility in
high income counties that experienced adverse weather shocks than counties that did not.
These effects are not present in counties with high poverty rates. Using weather shocks in
combination with stay-at-home mandates as an instrument for social distancing, we find
that measures taken to promote social distancing helped curb infections in high income
counties but not in low income counties. These results have important policy implications
for containing the spread of infectious diseases in the future.
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1 Introduction

Since the first US case of a SARS-CoV-2 infection was identified in Washington on January 21,
2020, both, cases of SARS-CoV-2 infections and deaths due to COVID-19 have surged exponen-
tially. On March 13, a little over 2,000 identified infection cases were reported. Subsequently
this number increased to over 161,000 by March 30th and over 600,000 by April 4th.1 By early
April the US had the highest numbers of infections and COVID-19 related deaths in the world.
Due to growing public health concerns almost all US states declared a state of emergency and
numerous states issued stay-at-home orders. In this early period, the increase in the number
of cases (infections as well as deaths) was concentrated in the East and West coastal regions.
Although the geographic spread of the disease has been closely tracked, less is known about
the relationship between the growth of SARS-CoV-2 infections and socioeconomic indicators.

The socioeconomic disparity in health outcomes is well-established in the field of Health
Economics. According to Santerre and Neun, 2010 there are three major channels that affect
these differences: (i) the education health gradient, (ii) the income health gradient , and (iii)

differences in environmental exposure. Recently, the social psychology literature has highlighted
that social interactions with close friends and family and even with peripheral members of our
social networks contribute strongly to our overall well-being (Sandstrom and Dunn, 2014).
However, a priori it is not clear how socioeconomic status correlates with social interactions.
In light of the COVID-19 pandemic these contributing factors to socioeconomic disparity need
to be reassessed as the pandemic has the potential to amplify them.

For example, although richer individuals have more resources to self-isolate, they are initially
more likely to participate in economic and social activities compared to poorer individuals as
many forms of social interaction are normal goods.2 This could make richer individuals more
susceptible to being infected in the beginning of the pandemic. On the other hand, once infected,
richer individuals have more resources to self-isolate and therefore prevent the spread within
their social networks, while poorer individuals, once infected, may not be able to efficiently
self-isolate due to resource constraints. Additionally, relatively poor individuals tend to be
more involved in “frontline” essential work which may prevent them from self-isolating, even
if non-pharmaceutical interventions (NPIs) such as stay-at-home mandates are in place (Blau,
Koebe and Meyerhofer, 2020b). Hence, differences in initial transmission pathways between rich
and poor individuals as well as resource inequities warrant an investigation of the trends in the
spread of SARS-CoV-2 infections and COVID-19 related deaths along the poverty spectrum.

Focusing on county-level effects, this paper describes trends of both, SARS-CoV-2 infections
1https://coronavirus.jhu.edu/us-map
2Saffer (2008) shows that social interaction is not only a function of its price, but also the prices of comple-

ments and substitutes as well as income. He further shows that many forms of social interactions increase with
income.
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cases and COVID-19 related deaths as of April 28, 2020, by socioeconomic status. We pursue
three avenues of inquiry: first, we descriptively summarize the relationship between infection
cases and poverty; second, we track the propagation of cases from richer to poorer counties;
and third, we break down the effects of the chief countermeasure deployed against the disease,
the stay-at-home order, by its effectiveness among high and low income county groups.

In the first part of this paper we rank counties by their poverty rates measured in 2016
and form 20 county groups with each group representing about the same number of people.
We show that the relation between poverty and the cumulative number of identified infections
is U-shaped, with infections concentrated among the richest and the poorest counties. The
U-shaped curve is also present if we only examine highly populated areas. On the other hand,
in a sub-sample of low density counties the COVID-19 case rates increase monotonically with
the poverty level and the U-shape disappears. This may be indicative of an increased ability
to self-isolate in rich low density areas compared to densely populated areas that are equally
rich where self-isolation might be more difficult to achieve.

Furthermore, we observe that COVID-19 spread from higher to lower income communities
during the early stages of the pandemic. Until the second week of March 2020, the number
of cumulative cases of infections was significantly higher in high income counties. This is
consistent with reports that the virus entered the US through international travel, which is
disproportionately more prevalent among richer individuals.3 However, by the end of March
a U-shaped pattern emerges, depicting high infection numbers in both tails of the county
based poverty distribution. The increases in the number of cases in low income areas may
be explained by a lack of resources in combination with specific job attributes that simply
make it more difficult to practice adequate social distancing. This also makes NPIs such as the
stay-at-home mandate less effective in poorer communities.

The third task of this paper is to investigate the interaction between socioeconomic status
and the most widely implemented countermeasure: the stay-at-home orders. By the 15th of
March, 2020, almost all states in the US had declared a state of emergency and 15 states
had implemented a stay-at-home order.4 It is difficult to directly assess the adequacy of these
stay-at-home orders for various reasons. First, we are unsure of how effectively these laws were
implemented. For instance, most of the mandates allow for essential tasks such as grocery
shopping, dog-walking, visiting the pharmacy, etc. Numerous sources also document that NPIs
were relatively lax in the US compared to other countries. For instance, out of 16 countries
Chen et al. (2020) rank the US and UK as the two countries with the least effective NPIs.
Pan et al. (2020) conclude that in the US, only the most aggressive NPIs were effective, with

3Becken and Pant (2019), for instance, shows that the richest half of the world is responsible for 90 percent
of CO2 emissions from air travel.

4See a report in USA Today fromMarch 3, 2020: https://www.usatoday.com/story/news/nation/2020/03/30
and Table 1 for a summary of announcement dates of stay-at-home mandates in all 50 states.
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some less restrictive policies actually increasing death rates. Second, enforcement of these laws
in the US is determined at the local level and varies by state and even county. Finally, the
timing of the mandates might have been determined by expectations about the future spread
of infections which creates a methodological challenge (Gupta, Nguyen, Rojas, Raman, Lee,
Bento, Simon and Wing, 2020).

In order to investigate the relationship between social distancing and infections at the onset
of the pandemic, we use arguably exogenous county level weather shocks (i.e., unusually low
temperatures) coupled with the local stay-at-home mandate as instruments for mobility, and
then estimate the effects on COVID-19 cases in rich (below the 50th percentile of the 2016 county
poverty ranking) and poor (above the 50th percentile of the 2016 county poverty ranking) county
groups, respectively. The working assumption for identification is that while the marginal cost
of mobility itself is high during a lockdown period, extreme weather during the lockdown will
further constrain mobility.

In order to implement the two-step procedure we use cell phone mobility data and track
the interaction effect of the legal mandate and weather shocks on mobility in an event study
framework. We first show that prior to the mandate there are no statistically significant differ-
ential trends in mobility between counties that experience a bad weather shock and counties
that do not. Second, we show that after a mandate is in effect, average mobility in richer
counties that experience weather shocks decreases compared to similarly rich counties with-
out a weather shock. We are not able to detect such differences in mobility in lower income
counties. One possible explanation for this finding is that essential (frontline) workers, who
are to some extent excluded from the constraints imposed by stay-at-home mandates, tend to
live in poorer neighborhoods (Blau, Koebe and Meyerhofer, 2020b). Next, we use the predicted
mobility measures from the first step and show that a 1 percent decrease in mobility in either
week two, three, or four following the mandate announcement decreases COVID-19 caseloads
by 1.6, 2.16, and 2.2 percent, respectively. However, these results are only observable in richer
counties as poorer counties did not experience decreases in mobility of the same magnitude.
Our back-of-the-envelope calculation suggests that an increase in social distancing following
a stay-at-home mandate leads to a 38 percent reduction in COVID-19 infections among high
income counties.

Our findings come with two caveats. First, the exclusion restriction for a valid instrument
in this context is governed by the assumption that weather shocks affect coronavirus infections
only through a reduction in human-to-human interactions and not directly through a biological
channel.5 Second, this calculation is based on an IV estimator which only measures the Local
Average Treatment Effects (LATE).

5A detailed discussion of this issue is provided Section 4.1.
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Literature Review. COVID-19 studies in economics are emerging rapidly, with re-
searchers investigating various forms of economic disruptions created by the disease. Our paper
makes contributions to the following strands of this literature.

First, there is a literature tracking the early economic effects of the pandemic on mobility
patterns and population health. Some of these studies such as Brown and Ravallion (2020)
and Chang et al. (2020) show correlations between socioeconomic characteristics and COVID-
19 caseloads in connection with observed changes in mobility which is mostly based on newly
available cell phone data.6 We contribute to this literature and show a distinct U-shape pattern
between COVID-19 cases and county poverty measures that appears early on in the pandemic.
This pattern subsequently dissipates as the virus spreads more broadly. As far as we are aware,
we are the first to show this systematically in a non-parametric framework. We then relate this
pattern to a plausible pathway of the virus spreading from high to low income areas with high
population density.

Second, the program evaluation literature investigates the effects of the stay-at-home orders
on coronavirus cases and associated labor market effects. Friedson et al. (2020) find that in
California the adoption of a statewide Shelter-In-Place Order (SIPO) on March 19, 2020 reduced
COVID-19 cases by 125.5–219.7 per 100,000 individuals by April 20, 2020. In a follow up study,
Dave et al. (2020) expand their identification strategy by utilizing across state variation in the
timing of stay-at-home mandates. They find that mandates decrease the number of cumulative
COVID-19 cases by 44 percent.7 However, Gupta, Nguyen, Rojas, Raman, Lee, Bento, Simon
and Wing (2020) express methodological concerns in conducting a program evaluation of stay-
at-home mandates by highlighting that the state government’s decision to adopt the law is based
on the projection of future growth in the number of caseloads and often predates increases in
cases and deaths. This creates non-trivial methodological challenges in using these laws as valid
natural experiments.

Our novel approach to evaluate the effectiveness of social distancing on slowing the spread
of infections in high vs. low income communities uses arguably exogenous weather shocks
along with stay-at-home mandates as instruments for mobility. The only other studies we are
aware of that also use weather data to construct instrumental variables in connection with
the coronavirus pandemic are Qiu, Chen and Shi (2020), Brzezinski et al. (2020) and Kapoor
et al. (2020). Our approach differs from theirs in two ways. First, previous studies have
used weather patterns as arguably exogenous instruments for social distancing which results in
consistent estimates of the effect of social distancing on the transmission rate of COVID-19.
We, on the other hand, use stay-at-home mandates as a second instrument which is a subtle

6Gupta, Simon and Wing (2020) provide a short review of the literature addressing the early phase of the
pandemic.

7In related studies both Fowler et al. (2020) and Courtemanche et al. (2020) use difference-in-differences
designs to show that the stay-at-home mandate helped flatten the growth curve of new COVID-19 infections.
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but important methodological change of the estimation method. Our analysis uses variation
from arguably exogenous natural forces (weather patterns) that bolster the effectiveness of
government regulation in order to identify the effect of stay-at-home mandates on COVID-
19 infections through the channel of reduced mobility (i.e., social distancing). Second, we
investigate the differential effects of government mandates on mobility and COVID-19 infections
between high and low income communities which will provide policymakers with new evidence
concerning the efficacy of pandemic response regulations.

A closely related strand of literature focuses on documenting the labor market disruptions
associated with COVID-19 (e.g., Atkinson et al., 2020; Andersen et al., 2020; Coibion, Gorod-
nichenko and Weber, 2020; Kong and Prinz, 2020). These studies document significant increases
in unemployment and estimate job loss numbers of up to 20 million. Mongey, Pilossoph and
Weinberg (2020) indicate that workers in “low-ability-to-work-from-home” sectors experienced
greater losses in short-term employment and are also more likely to be economically vulnerable.
Similarly, some studies argue that the effects of NPIs such as the “Great Lockdown” can vary
across populace and are less-binding among frontline essential workers, who find it difficult to
substitute their work with work done from their homes. (Blau, Koebe and Meyerhofer, 2020a;
Kahn, Lange and Wiczer, 2020). Our research is complementary in that we document that
mandates are less effective in reducing mobility in low income counties. And while we do not
make a direct connection from mobility to employment, the literature mentioned here certainly
has established this link, especially for lower paying jobs in some of the essential sectors.

The study is organized as follows. Section 2 documents the data used in the study, Section
3 describes the estimation, while Section 4 discusses the results. Section 5 concludes the study.8

2 Data

2.1 County Level SARS-CoV-2/COVID-19 Data

The county level data for cases of SARS-CoV-2 infections and COVID-19 related deaths are
extracted from the USAFacts website. This database provides cumulative numbers of infection
cases and deaths for each county since January 22nd, 2020 and the numbers at the county-levels
are updated by referencing the state and local agencies directly.9

Using the cumulative number of events (infection cases and deaths), we focus on five cross
sections at the county level: i) March 11th, ii) March 23rd, iii) April 7th, iv) April 20th, and v)

8Appendices A contain more detailed results about the curve fitting method used to track the COVID-19
patterns

9Data from USAFacts is essentially identical to data released from the Johns Hopkins University Center for
Systems Science and Engineering of the Whiting School of Engineering which is freely accessible at: https:
//github.com/CSSEGISandData/
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April 28th to conduct descriptive analysis of the spread in infections across poverty spectrum.
The spatial dispersion of cases and deaths are presented in Figures 1 and 2 for April 28th,
respectively. We also construct the weekly number of new cases aggregated at the county level
starting from the week following January 22nd–April 28th, 2020 which results in 14 weeks of
panel data. The county level panel sample is used to evaluate the impacts of effective social
distancing on the spread of infection across higher income and lower income communities. Table
2 shows the summary statistics of the county level panel sample from weeks of January 22nd to
April 28th, 2020.

2.2 Other Data Sources

Poverty Data. We use the Small Area Income and Poverty Estimates (SAIPE) county esti-
mates for 2016. The data show the percentage of the population in a county living below the
poverty level.10 The spatial distribution of poverty across counties is shown in Figure 3. The
county level population data by age and race is extracted from the Survey of Epidemiology
and End Results (SEER) through the NBER website.11 The land area and unemployment rate
data are obtained from the US Census Bureau and Bureau of Labor Statistics, respectively.

Social Distancing Data. We use social distancing data from SafeGraph.12 SafeGraph is
offering a temporary social distancing metric that provides daily views of median movements
from one’s home (in meters) based on cell phone data aggregated at the census block level.
Daily data is available going back to January 1, 2020. The data is generated using a panel
of GPS pings from anonymous mobile devices. A common nighttime location of each mobile
device over a 6 week period is generated at the Geohash-7 granularity which is approximately
a 153× 153 meters area. This location is referred to as the device’s "home". Devices are then
aggregated by home census block group. Variables are provided for each census block group.
We use two variables: device-count and distance-traveled-from-home. The first is simply the
total number of active devices in the census block group. Census block groups with device
counts less than five are excluded and the distance traveled variable is the median distance (in
meters) traveled from the home location by the devices included in the device count during the
time period (excluding any distances of 0). First the median for each device is calculated and
then the median (distance traveled from home) over all devices is reported in the SafeGraph
data. We then aggregate these census block group medians to the county level using the number
of devices in each census block as weights.

10The link to the SAIPE website where poverty estimates can be found is https://www.census.gov/data/
datasets/2016/demo/saipe/2016-state-and-county.html

11The link to the website is https://data.nber.org/data/seer_u.s._county_population_data.html.
12See https://www.safegraph.com/
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Weather Data. We gather daily weather data from Weather Underground13 for each
county and aggregate the data at weekly level. We searched Wikipedia to determine the largest
(most populous) community in each county and put the result into Weather Underground
to obtain historical weather data for each county using the weather station assigned to that
jurisdiction by Weather Underground. More specifically, we first searched a county in Google.
We then looked through the results to see if the first page mentioned the largest community in
the county. If it was not mentioned on the first page, we used Wikipedia which was linked on
the first page of every set of Google results. Once we had the name of the largest community,
we searched for this community on the Weather Underground website. We then navigated
to History which automatically updates to the nearest weather station that retains historical
weather data. We then saved the name of the weather station and extracted the weather data
from January–April 2020 for this county.

Following the procedure mentioned in the previous paragraph, we collect daily weather data
at the county level for 3092 counties, which are used to calculate weekly averages. This gives
us a balanced panel for 3,092 counties over the span of 14 weeks, starting from January 22 until
April 28.14 The weather data is used to construct arguably exogenous weather shocks, which
along with the mandate are used as instruments as described in section 3.

Testing data. We gather daily cumulative number of tests administered at the state level
from The COVID Tracking Project.15 The number of coronavirus tests conducted is extracted
from the local or state public health authorities. The cumulative number of tests is aggregated
at the weekly level.

2.3 Descriptive Analysis: Emerging Patterns of Coronavirus Cases

by Poverty Level

Our first goal is to analyze the relationship between poverty levels at the county level and
coronavirus infections/deaths. We first proceed with a non-parametric approach and rank each
county according to its poverty level – defined as the percentage of the county’s population
with income below the national poverty level in 2018. We next form 20 county-groups so
that the overall population size of each county-group is approximately the same. The first
so constructed county-group contains the counties with the lowest poverty levels and the last
county-group contains counties with the highest poverty levels.16 We then produce scatter plots

13https://www.wunderground.com
14There are 3,143 counties or county-equivalents including DC in the US. We dropped 51 counties due to

missing weather or mobility data.
15The data is available on this website. https://covidtracking.com/api
16This approach is similar to the method in Currie and Schwandt (2016) who analyze county level trends in

mortality by poverty levels.
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with the county-grouping poverty levels on the horizontal axis and the county-group coronavirus
infections/deaths on the vertical axis.

Although the approach defined in the preceding paragraph adjusts for population size, it
does not account for population density of an area, which is arguably an important determinant
of coronavirus infections. We next account for population density within a county-group and
divide counties into low and high density counties according to the median density value of
all counties. We then rank all low density counties and all high density counties separately
and repeat the county-group procedure from the previous paragraph for low and high density
counties separately to produce scatter plots of the two different county-group categories.

County Poverty Rates and Coronavirus Cases. Figures 4 and 5 plot the number of
coronavirus infections and COVID-19 related deaths for each percentile of the county-group
poverty distribution. We split the sample into five time periods that are indicated by markers
that correspond to the total number of cases by March 11th, March 23rd, April 7th, April 20th,
and April 28th, respectively. We use local linear regressions and smoothing parameters based
on the leave-one-out cross-validation method to fit a curve for each period sample.17

Both Figures 4 and 5 show emerging trends in the number of infections and deaths according
to county-groupings, sorted by the county poverty level. The fitted curve pertaining to March
11 is flat, indicating that the number of identified cases was very low at this time so that no
discernible difference between rich and poor counties is detectable. By March 23 a pattern
begins to emerge with relatively higher case counts at the very low and very high poverty
percentiles. This pattern becomes more pronounced by April 7 where a U-shaped curve begins
to show. This indicates that the number of infections are higher at the lowest and the highest
poverty groupings with a relatively low number of cases at the mid-level poverty levels. By
April 20 the U-shaped curve is well pronounced and appears consistently thereafter.18

The pattern of COVID-19 related deaths, shown in Figure 5, is similar except that deaths
are disproportionately concentrated in county-groupings with higher poverty levels. In order
to discern patterns by population density, we use the median population density of all counties
and split the sample into a low density counties sample and a high density counties sample.
We then repeat the grouping procedure above for each sample separately. Figures 6(a) and
6(b) show the patterns of the number of infections by poverty percentile in the high and low
population density sample, respectively. As expected, the number of cases in low density
counties is substantially lower than in high density counties. For instance, at the 5th percentile
of the county poverty grouping, the total number of cases on April 20, 2020 is over 50,000 in

17We provide a detailed description of the curve fitting procedure in Appendix A.
18One observation point that does not align well with the U-shaped curve is the observation pertaining to the

50th percentile on the distribution of county-group poverty rates. This particular county-group includes Queens
county of New York City which was especially hard hit by COVID-19 at the onset of the pandemic.
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the high density group but only 1,500 in the low density group.
The U-shaped relationship between the county-groupings and cases prevails in high density

counties as shown in Figure 6(a). In contrast, the relationship between the county-groupings
and coronavirus infections in low density counties does not follow a U-shape. It is relatively flat
for counties with low poverty rates and strongly increases in counties with high poverty rates
as depicted in Figure 6(b). The patterns of COVID-19 related deaths in high and low density
counties, shown in Figures 7(a) and 7(b) respectively, mirror the trends for infections as shown
in the earlier figures except that COVID-19 related deaths seem to be even more associated
with high poverty levels, especially in areas with low population density.

Rich to Poor Propagation Pattern. Coronavirus cases entered the US through in-
ternational travel (airways and ships)—activities that are likely to be undertaken by richer
individuals. To investigate this hypothesis, we first track the initial patterns in COVID-19
cases starting from the last week of February until March 11, 2020. The early relationship
between poverty levels and coronavirus cases is shown in Figure 8. In these figures we track the
number of cumulative (infection) cases from late February through early April. The downward
sloping best-fit line on the rightmost figure suggests that in the initial phase of the pandemic
infections in the US were more concentrated in richer counties, and the second row shows the
emergence of the U-shaped pattern.

Two channels can potentially explain the dramatic propagation of infections in richer areas
over a short period of time. First, at the very early stages, people may not have fully realized
the seriousness of the virus.19 Since infections were initially concentrated in higher income
groups, who are also more likely to be involved in social activities (through both employment
and social activities), it may have been easier for the virus to spread in richer neighborhoods
first. A comparison between Figures 6(a) and 6(b) shows that the ratio between the number of
cases in rich to poor counties is higher in densely populated counties compared to low density
areas. The ratio of infections between rich and poor counties in areas with high population
density is close to 1 but only around 0.4 in areas with low population density. In other words,
having high income and residing in low-density communities could be indicative of a better
ability to effectively self-isolate, compared to an equally wealthy person living in a densely
populated area. Second, once the disease enters poor neighborhoods, it becomes very difficult
to control the further spread of infections as poor households may neither have the resources to
effectively self-isolate nor jobs that can easily be switched to working-from-home. It is therefore
not surprising that the number of cases started to increase dramatically in poor neighborhoods

19Several media outlets as well as the Trump administration have downplayed the danger of the virus, espe-
cially in the early days of the outbreak. Compare https://www.mediamatters.org/coronavirus-covid-19/
fox-news-downplaying-risk-coronavirus-could-get-people-killed and https://www.vox.com/2020/
6/8/21242003/trump-failed-coronavirus-response
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in early April—eventually catching up with high income areas by April 28—as can be seen in
the bottom row panels in Figure 8.

3 Methods

Following California’s implementation of a stay-at-home mandate on March 19, 2020, almost all
of the states implemented similar mandates within the next two weeks. However, as mentioned
in Gupta, Nguyen, Rojas, Raman, Lee, Bento, Simon and Wing (2020), the mandates are
endogenously set, as mandates depend on current and the projection of future COVID-19
cases. In order to evaluate the impacts of social distancing on COVID-19 caseloads across rich
and poor county groups, we propose a novel methodology that combines announcement dates
of the stay-at-home mandate with arguably exogenous weather shocks. The poor county group
comprises counties below the median of our county ranking according to the fraction of the
population below the 2016 poverty level.

Our identification argument goes as follows. Severe weather patterns can reduce mobility.
However, weather shocks can have a compounding effect during a stay-at-home mandate as
the marginal cost of mobility is already high during the shutdown and extreme weather can
increase it even more. Hence, detrimental weather patterns can increase the effectiveness of a
mandate. We then measure the differential effect between counties with severe and counties
with normal weather patterns under the mandate. In order to accomplish this, we propose to
estimate three empirical specifications.

3.1 The Impact of Weather Shocks and Stay-at-Home Mandates on
Mobility

First, we estimate the effects of detrimental weather shocks coupled with the mandate on
mobility across rich and poor county groups by using the following event-study specification:

ln(mobility)c,t = α+

j=−2∑
j=−5

βj ×Rc × I(t = j) +

j=5∑
j=0

βj ×Rc × I(t = j) +

j=−2∑
j=−5

δj × Pc × I(t = j) (1)

+

j=5∑
j=0

δj × Pc × I(t = j) +

j=−5∑
j=−5

κj ×Rc × I(t = j)× I(mintempc,t < Q25,s,m)

+

j=−5∑
j=−5

λj × Pc × I(t = j)× I(mintempc,t < Q25,s,m) + σR ×NPIc,t ×Rc + σP ×NPIc,t × Pc

+

i=14∑
i=1

ζi × densityc × I(t = i) +
i=14∑
i=1

θi ×Rc × I(t = i) + η × tempc,t + γc + φt + εc,t,

where, mobility is the average distance traveled away from home in county c and week t as
obtained from Safegraph. We use this distance measure as a proxy measure for social distancing.
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Variables Rc and Pc are indicators for the rich and poor county groups, respectively. We interact
these indicators with indicator variable I(t = j), where j ∈ {−5,−4, ...,+4,+5} is defined
as weeks prior (negative signs) or past (positive signs) the initial announcement date of the
mandate. The week before the mandate announcement is used as the omitted category. Next,
poverty group and weeks away from the mandate are further interacted with an indicator
variable for temperature shocks, I(mintempc,t < Q25,s,m). This variable equals one if the
minimum temperature in county c in week t is below the 25th percentile of recorded temperatures
in a specific monthm and state s, denoted as Q25,s,m.20 In other words, I(mintempc,t < Q25,s,m)

captures weather shocks in county c at time t that are defined as unusually cold weather
relative to weather pattern of the respective county’s state in a given month. Furthermore,
a vector of NPIs including restaurant restrictions, closure of businesses, and declarations of
emergency are accounted for in the specification by interacting the NPI vector with rich vs.
poor county groups.21 The county level time invariant population density measure in 2019
is interacted with weekly indicators. The county groups (rich vs. poor counties) are also
interacted with weekly dummies to absorb common time trends across rich and poor county
groups, respectively. Variable γc represents the county fixed effects and captures unobserved
time invariant heterogeneous relationships between area specific weather patterns and mobility
outcomes. In order to capture the possible correlation within counties, the standard errors are
clustered at the county level.

In specification 1, the coefficients of interest are κj and λj. They show the effect of the
stay-at-home mandate coupled with arguably exogenous extreme weather shocks on mobility
patterns during the onset of the pandemic for rich and poor county groups, respectively. The
identification of κj and λj is obtained from the weather shock. After controlling for the in-
teraction between weeks away from the mandate and poverty groupings (rich vs. poor county
groups), county fixed effects and week fixed effects (also interacted with poverty groups), a
county “A” with a mandate can serve both as affected or unaffected unit, depending on the
weather pattern of the county. Moreover, the event-study nature of the specification allows
for the evaluation of the effects in the weeks before and after the mandate is announced. This
provides a test for our claim that weather shocks constitute an additional cost during the lock-
down period and decrease mobility more in counties with unusually cold weather. The event
study setting is particularly important as it reveals plausibility regarding the validity of the

20Using other state temperature percentiles as cutoffs, such as the median, does not change the estimates
but weakens the F-statistic. Also, in order to account for the seasonal rise in temperature over the months in
the sample, we use also estimate a specification with an absolute cut-off point, given by the 25th percentile of
recorded temperatures in all months. The findings from these alternative estimates yield similar results. These
results are not presented but are available upon request.

21Restaurant restrictions were imposed to reduce mobility and contain the spread of COVID-19. Restaurant
restrictions were implemented widely. A total of 49 states have imposed such restrictions by April 7, 2020.
Moreover, closure of businesses imply a state’s decision to close all non-essential businesses when a partial
closing was already in place. In this sense, closure of businesses are more restrictive than restaurant restrictions.
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identification (to an extent), which rests on the assumption that there are no preexisting differ-
ences in trends of the outcome across the treated and untreated units. As suggestive evidence
regarding the validity of our assumption, the estimates of κj and λj should be close to zero for
j < 0 and decrease in magnitude for j ≥ 0. However, these effects are likely to vary across rich
and poor county groups.

3.2 The Impact of Weather Shocks and Stay-at-Home Mandates on

COVID-19 Cases

We next estimate the reduced form effects of effective social distancing on COVID-19 cases
using the following specification:

ln(cases)c,t = α+

j=−2∑
j=−5

βj ×Rc × I(t = j) +

j=5∑
j=0

βj ×Rc × I(t = j) +

j=−2∑
j=−5

δj × Pc × I(t = j) (2)

+

j=5∑
j=0

δj × Pc × I(t = j) +

j=−5∑
j=−5

κj ×Rc × I(t = j)× I(mintempc,t < Q25,s,m)

+

j=−5∑
j=−5

λj × Pc × I(t = j)× I(mintempc,t < Q25,s,m) + σR ×NPIc,t ×Rc + σP ×NPIc,t × Pc

+

i=14∑
i=1

ζi × densityc × I(t = i) +

i=14∑
i=1

θi ×Rc × I(t = i) + η × tempc,t + γc + φt + εc,t,

which is similar to specification 1, except that the dependent variable is the logarithm of the
number of new COVID-19 infection cases in county c in week t.22 Here, κj and λj track the
reduced form effects of social distancing, through both legal (mandate) and natural (weather
shock) forces, on the number of COVID-19 cases during the onset of pandemic for both rich
and poor county groups, respectively.

3.3 Two-Stage IV Estimation of the Impact of Mobility on COVID-

19 Cases

The specification in equation 1 can also be used as the first stage of an IV estimation procedure,
with the triple interaction between the county grouping based on income level, mandate week,
and weather shocks as potential instrument for social distancing. The validity of using arguably
exogenous weather shocks in the construction of this instrument is based on the assumption
that extreme weather shocks affect the COVID-19 cases only through a reduction in human-
to-human interaction but weather patterns do not biologically facilitate the transmission of the
virus.

22Before taking the log, we add 1 to the actual number of cases. We test the robustness of this method by
adding smaller values than one. The results do not change. These alternative results are available upon request.
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Although the timing of the mandate is endogenous as it is driven by the initial number and
future projections of COVID-19 cases, the weather shocks are arguably exogenous in the model
specifications. The interaction between the legal mandate and weather shocks can therefore
be used as an instrument for mobility patterns—our proxy for social distancing—under the
assumption (or exclusion restriction) that weather patterns influence COVID-19 cases through
social distancing only but do not otherwise directly affect transmissions through, say a biological
pathway of pathogens that is temperature dependent. This exclusion restriction would be
violated if the transmission of the SARS-CoV-2 coronavirus is influenced by weather similar to
other viruses (e.g., influenza, MERS, and SARS). Contrary to earlier beliefs that the spread
of virus would subside over the summer months due to a rise in temperature, a growing body
of literature has produced evidence suggesting very modest effects of weather on transmission
of SARS-CoV-2 coronavirus (Baker et al., 2020; Carlson et al., 2020; Schuit et al., 2020; Weed
and Foad, 2020; Xu et al., 2020). The findings from these studies are consistent with the actual
rise in COVID-19 cases throughout 2020, including the summer period. This further provides
empirical evidence that weather has a very modest (if any) direct influence on the spread of
COVID-19.23

There is no direct evidence to suggest that weather patterns significantly dictate COVID-19
spread (Carlson et al., 2020). Schuit et al. (2020) find that only 1 percent of the reduction
in COVID-19 transmissions can be explained by environmental UV radiation and Baker et al.
(2020) show that climate drives only modest changes in the size of the COVID-19 pandemic.
Furthermore, Weed and Foad (2020) review recent studies that all find only an indirect impact
of temperature on COVID-19, i.e. by keeping people indoors and/ or closer to each other. In
light of this body of work, the IV estimates obtained can be gauged in basis of their magnitude
as to whether it can be cohesively explained by weather directly influencing transmission of the
virus.

Using specification 1 as the first stage, we use the predicted values of log of mobility in
our second stage to investigate the direct relationship between social distancing on COVID-19

23Nevertheless, it can be argued that if low temperature and dry air did expedite the spread of COVID-19,
our results obtained from using unusually cold temperatures would likely be downward biased.
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caseloads during the onset of the pandemic. Specifically, we estimate the following specification:

ln(cases)c,t = α+

j=−2∑
j=−5

βj ×Rc × I(t = j) +

j=5∑
j=0

βj ×Rc × I(t = j) +

j=−2∑
j=−5

δj × Pc × I(t = j) (3)

+

j=5∑
j=0

δj × Pc × I(t = j) +

j=−5∑
j=−5

κj ×Rc × I(t = j)× ̂ln(mobility)

+

j=−5∑
j=−5

λj × Pc × I(t = j)× ̂ln(mobility) + σR ×NPIc,t ×Rc + σP ×NPIc,t × Pc

+

i=14∑
i=1

ζi × densityc × I(t = i) +

i=14∑
i=1

θi ×Rc × I(t = i) + η × tempc,t + γc + φt + εc,t,

where all of the variables are similar to those in equation 2, except that ̂ln(mobility) are the
predicted values of log of mobility from the first stage, as defined in equation 1. Parameters κi
and λi again track the effect of social distancing on COVID-19 caseloads under the assumption
that the exclusion restriction holds.

4 Results

4.1 The Effects of Social Distancing on COVID-19 Infections by
Income Levels

We next investigate the role of stay-at-home mandates on the number of COVID-19 cases
across poverty groups. We first begin by highlighting the compounding effects of stay-at-home
mandates and extreme weather patterns on reductions in mobility across rich and poor county
groups by estimating specification 1 from Section 3. The interaction coefficients between the
indicator variables representing the weeks before or after the announcement of the mandate,
the rich vs. poor county groups, and the presence of extreme weather shocks are plotted in
Panel A of Figure 9 for high (left) and low (right) income county groups. The figure pertaining
to the rich county group shows that the interaction coefficients are small and statistically indis-
tinguishable from zero in the weeks prior to the announcement of the mandate. This is followed
by a significant drop in the magnitude of the coefficient estimate in the announcement week
itself. Thereafter the magnitude of the interaction coefficients pertaining to weeks following
the announcement week remain negative for four subsequent weeks, before slowly rising back
to zero in the fifth week from the announcement date. These results provide evidence of a com-
pounding effect of the mandate and weather shocks in reducing mobility among high income
counties in the immediate weeks following the announcement of a mandate. More specifically,
weather shocks present more binding mobility constraints while a stay-at-home mandate is in
effect as the marginal cost of mobility is already high during the shutdown and extreme weather
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increases it further. However, the results do suggest that mobility eventually reverts back to
its initial level. The detailed results are presented in Table 3. Column (6) shows coefficient
estimates of our preferred specification which we plot in Panel A of Figure 9. From Column
(6) in Table 3 we can see that the interaction coefficient between the indicator representing
(i) the week of the mandate announcement (week 0), (ii) the rich county group, and (iii) a
weather shock suggests that the mandate reduced mobility in the rich county group which also
experienced a weather shock by [(exp(−0.145)−1)×100] = 13.5 percent on average in the week
of announcement compared to counties that announced the mandate but did not experience a
weather shock in that week.

In contrast to the rich county group, results pertaining to the poor county group suggest
that mandates do not affect mobility to a similar extent. The interaction coefficients before
the announcement week are indistinguishable from zero as is the interaction term indicating
the announcement week itself. In the week following the announcement, we observe a drop
in the magnitude of the coefficient estimate. However, the drop in mobility is transitory as it
rises back up in the subsequent week. These differential patterns between high and low income
groups are consistent with Blau, Koebe and Meyerhofer (2020a)’s discussion that the effects of
NPIs during the “Great Lockdown” can vary across populace and is likely to be less-binding for
essential workers who are less able to substitute onsite work with work performed at home. We
also show precisely estimated zero effects for weeks prior to the mandate as a validation of the
common trend assumption between treated and control units. Crucially, this differential impact
cannot be detected in poorer counties, perhaps because essential workers—who on average tend
to be less educated, have lower wages, and have a higher representation of men, disadvantaged
minorities such as Hispanics, and immigrants—are more likely to reside in poorer counties.
(Blau, Koebe and Meyerhofer, 2020b).

Panel B in Figure 9 shows the reduced form results obtained from estimating specification
2, where the dependent variable is the log of the weekly number of new COVID-19 cases. It is
reassuring to note that the pattern of the interaction coefficient estimates mimics the pattern
of the interaction coefficients describing mobility patterns in Panel A. This is indicative of a
strong positive relationship between mobility and new COVID-19 cases during the onset of the
pandemic. While we do observe a reduction of COVID-19 cases in poor county groups in week
2, 3 and 4 following the announcement of the mandate, it is obvious that the reductions cases
are more pronounced in the rich county group. The fact that we did not observe significant
reductions in mobility in low income areas while we do observe reductions in COVID-19 cases
could be the result of spillover effects from reduced mobility in richer counties.

As previously described in Section 3, the results shown in Panel A of Figure 9 are also the
first stage estimates of the IV setup in expression 3. In all first stage specifications presented
in Table 3 the F-statistics—based on a Wald test that compares the restricted to the unre-
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stricted specification by using White’s standard errors to account for heteroskedasticity—are
greater than 10 which is a widely used cut-off value to determine the strength of the instrument
(Staiger and Stock, 1994). Next, using the predicted values of log-mobility from the first stage,
we estimate the second IV stage described in specification 3 and plot the results in Panel C of
Figure 9 for both rich (left) and poor (right) groups. The interaction coefficients are statisti-
cally indistinguishable from zero in the weeks before the mandate is announced for both rich
and poor county groups. This is suggestive of no systematic relationship between predicted
mobility and COVID-19 cases prior to the announcement of the mandate which is reassuring
as the instrument itself is not binding during the period before the announcement week (as
shown in Panel A). The interaction coefficient related to the announcement week itself drops in
magnitude. However, there is a discontinuous spike in the coefficient estimate following the sec-
ond week of the mandate announcement as the coefficients increase in magnitude, are positive,
and statistically significant at the 5 percent levels. This depicts a direct positive relationship
between mobility and COVID-19 caseloads. We provide detailed coefficient estimates in Table
4. The coefficients for the rich county group during the second and third week following the
announcement week in Column (6) of Table 4 suggest that a 1 percent increase in mobility
leads to 1.6 and 2.1 percent reduction in the weekly number of cases, respectively.

For the validity of the IV estimate, weather shocks— defined as extreme cold temperature—
should not directly affect the transmission of COVID-19. Genetically, the structure of SARS-
COV2 is similar to other coronaviruses, with four genes encoding proteins S (spike), E (en-
velope), M (membrane), and N (nucleocapsid). Theoretically, the lipid bilayer enveloping the
virus is more likely to be destroyed when exposed to dry heat (Neuman et al., 2011). Hence,
it was initially hypothesized that cold temperatures favor the survival of the virus and the
infections would decrease over the summer months (at least as circulated in media, although
experts disagreed).24

It should be noted that if cold weather shocks increase the likelihood of the survival of
SARS-COV2 viruses and therefore infections, the IV estimates in our setting will be biased
downwards. However, contrary to initial beliefs, a growing body of literature suggests that
weather patterns are not a critical direct driver for COVID-19 infections compared to other
pathogens such as influenza, MERS, or SARS. (e.g., Baker et al.; Carlson et al.; Schuit et al.;
Weed and Foad; Xu et al.). This is also evident from increases in the number of COVID-19 cases
throughout 2020, including the summer months. Moreover, people’s perception regarding the
impacts of weather on the transmission of COVID-19 can further lead to changes in behavior,
which will invalidate the single-channel mechanism proposed in the first stage. Using twitter
posts collected between January 23 and June 22, 2020, Gupta, Bansal, Jain, Rochelle, Oak and

24For a March 2020 newspaper article discussing the effects of Summer temperature on
the spread of COVID-19 infections see: https://www.theguardian.com/us-news/2020/mar/30/
is-coronavirus-seasonal-summer
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Jalali (2020) show that people are in general uncertain about the potential impact of weather
on COVID-19. In light of these findings, the magnitudes of our IV estimates are too large in
order to be cohesively explainable by weather directly influencing the transmission of the virus.

In order to give the reader a sense of the magnitude of the IV estimates, we conduct a
back-of-the-envelope calculation of the effects of the stay-at-home mandate on COVID-19 cases
through decreases in social interactions. Using the percent drop in mobility following the
announcement of a mandate as proxy measure for social distancing, we estimate that stay-at-
home mandates helped reduce the number of COVID-19 infections in high income counties by
341,737 cases in the first five weeks following the mandate announcement. In order to estimate
this effect, we proceed as follows. First, the average decreases in mobility in in the first five
weeks following the announcement of a mandate are (16.36, 27.25, 32.83, 28.13, 32.4) percent,
respectively. Using the average number of cases in high income counties in the first five weeks
after the mandate was announced combined with the IV coefficients in Table 4, we calculate
what the number of cases would have been without any stay-at-home mandates in place. We
then multiply this vector with the weekly percent reduction in mobility and the total number
of rich counties (1,529). Adding up the effects over all five weeks results in 341,737 fewer cases.
According to the cumulative number of cases reported in high income counties by April 27
(557,349), our estimates suggest that 38 percent of reductions in COVID-19 infections in high
income communities can be attributed to social distancing (or reduced mobility) due to the
stay-at-home mandate. In comparison, Dave et al. (2020) find that the stay-at-home mandate
reduced the cumulative COVID-19 cases by 44 percent in the first three weeks following the
implementation of the mandate.25

4.2 Robustness Exercises

We conduct several robustness checks to validate our findings. First, we replicate our descriptive
findings from Figures 4 and 5 which were based on 20 county-groups and use 25 county-
groups instead. The results are very similar and the U-shaped relationship between COVID-19
cases and poverty percentile by county-group is maintained. Overall, our result are robust to
alternative county groupings.26

Second, given the very obvious outlier observations from the median county-group which
contains counties from the state of New York that we described earlier in Section 2.3, we next
repeat our descriptive analysis without county observations from New York. In addition, we
re-estimate specification 1, 2, and 3 using the reduced sample in order to check whether our

25We caution that our back-of-the envelope calculation is based on the local average treatment effect (LATE)
of the mandate and is therefore driven by individuals affected by weather shocks during the period following
the announcement of the mandate.

26Detailed results are available in Appendix B.
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results are driven by the dramatic surge in COVID-19 cases in New York during the onset
of the pandemic. Overall, the descriptive analysis as well as the estimation results of the
parametric models are robust to excluding observations from the state of New York. The
U-shaped relationship between COVID-19 cases and related deaths are both maintained in
the reduced sample. In addition, the quantitative results from the regression analysis can be
replicated without observations from New York and the quantitative results are very similar to
the estimation results based on the full sample.27

Third, we allow for differential growth in the number of cases over time within a given state
and control for the interaction between state and week fixed effects. We again find that our
main results are robust with respect to these specification changes.28

Finally, the true number of COVID-19 infections could be much higher than the reported
infections due to measurement error as recently discussed in Manski and Molinari (2020). For
the purpose of our analysis we maintain that any possible measurement error in reported
COVID-19 cases is unlikely to be systematically correlated with weather patterns. While the
estimated specifications do account for time variant testing at the state level, due to data
limitation we are unable to control for across county variation in testing within a state over
time. As with any study of COVID-19, we acknowledge the caveats presented by inaccurate
reporting of infections.

5 Conclusion

Reviewing evidence of the 2020 outbreak of COVID-19 in the United States, we observe a strong
poverty gradient in both infections and deaths in addition to important interactions between
poverty and population density. Overall infections increase at both tails of the distribution
of counties according to their poverty rates, creating a U-shaped curve. A similar pattern is
observed for confirmed deaths due to COVID-19 with an overall higher death rate among coun-
ties with higher poverty levels. These rates decrease for counties with more moderate poverty
levels and increase again for counties with very low poverty levels. Furthermore, distinguishing
between areas with low and high population density, we demonstrate that the U-shaped pattern
prevails in high density counties but disappears in low density areas. In low population density
areas, the infection rates in counties with high poverty rates dwarf the rates in counties with
lower poverty rates, essentially creating an exponential curve of COVID-19 cases when counties
are lined up according to their poverty rate. Along the same lines we see that while death rates
are higher across the board in high density counties, the impact of poverty is observed more
more clearly in low density areas.

27Detailed results are available in Appendix C.
28These results are not presented but are available upon request.
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Figures 4–7 raise an interesting question. Why does the overall relationship between coro-
navirus events and local area socioeconomic status—as defined by the poverty levels—follow a
U-shaped pattern in high density areas but not in low density areas? The U-shaped pattern
contradicts the well-established positive relationship between income and health outcomes.29

One possible explanation for the observed difference in the high and low density samples could
be due to disproportionately more testing for infections in rich counties which could result in
more identified cases in richer county-groupings. This could explain why we observe seemingly
higher infection rates as well as COVID-19 death rates in richer counties contrary to what the
income gradient literature would predict for other health outcomes. This possibility has been
highlighted by the media, suggesting that testing for coronavirus infections is a function of
income inequality and as such mirrors the overall trend in health disparity by income.30 How-
ever, in a recent study focused on New York City, Schmitt-Grohé, Teoh and Uribe (2020) find
that the spread in the number of tests administered as of April 2, 2020 is evenly distributed
across income levels. More importantly, another explanation for the difference in the pattern
between high and low density counties could be that high income individuals can only self-
isolate more effectively than low income individuals when they live in thinly populated areas,
whereas in high density counties, richer individuals may not be able to benefit as strongly from
this logistical advantage due to necessary day-to-day interactions.

Along these lines, we find indications of the spread in COVID-19 infections from high in-
come to low income communities. Evidence suggests that richer counties in densely populated
areas are the first to be infected; residents of the nearby lower income areas provide services to
the more economically active, resulting in their infection. Once the disease has entered poor
neighborhoods, the number of cases starts to increase dramatically, where economic disadvan-
tage exacerbates extant health, economic, and information disparities. At this point it becomes
very difficult to control the further spread of the disease as poor households do not have the
resources to effectively self-isolate.

This is our third main finding: the relative effectiveness of social distancing differs by income
group. By using arguably exogenous weather shocks along with the stay-at-home mandate, we
find compounding effects of legal (mandate) and natural forces in curbing mobility among high
income counties following the announcement of the mandate. However, such effects are not
present among low income counties. Furthermore, our IV estimates indicate that homoge-
neously implemented NPIs are not that effective in curbing COVID-19 cases in low income
counties. Overall, our findings support the claim that although NPIs such as the stay-at-home

29For a review of this literature see Wolfe, Evans and Seaman (2012). In a more recent study, Currie and
Schwandt (2016) show that the income gradient is well defined at local levels using life expectancy across
counties. Shrestha (2019) shows a similar pattern when analyzing the relationship between infant birth weight
and the prevalence of low birth weight across counties grouped by poverty levels.

30See New York Times article from March 18, 2020: https://www.nytimes.com/2020/03/18/us/
coronavirus-testing-elite.html

20

https://www.nytimes.com/2020/03/18/us/coronavirus-testing-elite.html
https://www.nytimes.com/2020/03/18/us/coronavirus-testing-elite.html


mandate are useful in curbing cases in richer areas, the same NPIs are as useful in promoting
social distancing in relatively poorer areas.

The IV finding—policy measures taken to promote social distancing affect high income
communities more than low income areas—is consistent with the pattern of spread in infec-
tions documented in our descriptive analysis. Initially, infections were higher in high income
communities but lockdowns successfully slowed down the infection growth rate. However, as
infections also started spreading in low income communities, the lockdown was less successful
in effectively promoting social distancing in these areas, which subsequently led to further in-
creases in infections in poorer communities. Overall, our results provide insights for the design
of future prevention strategies against COVID-19 (or similar infectious diseases) by suggesting
that, especially for low income areas, new policies need to be developed to prevent the spread
of infectious diseases.

Although we account for testing at the state level by using data from The Covid Tracking
Project in many specifications, we caution that lack of quality data on testing at the county
level may underestimate the number of infections (Manski and Molinari, 2020). This imposes a
limitation on the findings of this study, particularly if testing is correlated with socioeconomic
characteristics. Presuming that the cause of death is accurately classified, a U-shaped curve
portraying COVID-19 deaths is consistent with a U-shaped curve for infections. This, to
some extent, helps reduce our concern about possible differences in testing across localities.
Nevertheless, we emphasize the need for adequate testing data at the local level, which can
further benefit studies in this sector.
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Figures

Figure 1: SARS-CoV-2 Confirmed Infections by County

Notes: The data is from USAFacts as of April 28, 2020.
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Figure 2: COVID-19 Related Deaths by County

Notes: The data is from USAFacts and shows counties with deaths above the 75th percentile as of April 28,
2020.
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Figure 3: Poverty Rates in 2016

Notes: The data is based on Small Area Income and Poverty Estimates (SAIPE) county estimates.
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Figure 4: SARS-CoV-2 Confirmed Infections by Poverty Percentile

Notes: The source of data is USAFacts, as of April 28, 2020. We report the number of cumulative (infection)
cases for March 11, March 23, April 7, April 20, and April 28 in 2020 for 20 county-groups ranked by poverty
rate percentile. The curves are fitted using a smoothing method based on local linear regressions as described
in Appendix A.
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Figure 5: COVID-19 Related Deaths by Poverty Percentile

Notes: The source of data is USAFacts, as of April 28, 2020. We report the number of cumulative deaths due
to COVID-19 for March 11, March 23, April 7, April 20, and April 28 in 2020 for 20 county-groups ranked by
poverty rate percentile. The curves are fitted using a smoothing method based on local linear regressions as
described in Appendix A.
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(a) High Population Density

(b) Low Population Density

Figure 6: SARS-CoV-2 Confirmed Infections in Counties with Low vs. High Popu-
lation Density

Notes: The sources of data are USAFacts and the Census. Low density regions are those counties below the
median value of county level population density. We report the number of cumulative (infection) cases for March
11, March 23, April 7, April 20, and April 28 in 2020 for 20 county-groups ranked by poverty rate percentile for
high and low density areas separately. The curves are fitted using a smoothing method based on local linear
regressions as described in Appendix A.
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(a) High Population Density

(b) Low Population Density

Figure 7: COVID-19 Related Deaths in Counties with Low vs. High Population
Density

Notes: The sources of data are USAFacts and the Census. Low density regions are those counties below the
median value of county level population density. We then report the number of cumulative deaths due to
COVID-19 for March 11, March 23, April 7, April 20, and April 28 in 2020 for 20 county-groups ranked by
poverty rate percentile for high and low density areas separately. The curves are fitted using a smoothing
method based on local linear regressions as described in Appendix A.33



Figure 8: Coronavirus Infections and Poverty in the Early Months

Notes: Data are from USAFacts. We report the number of cumulative (infection) cases for February 26, March
4, and March 11, 2020 in the top panel. The downward sloping best-fit line on the rightmost figure suggests
that in the initial phase of the pandemic, infections in the US were more prevalent in richer counties. The
bottom panel reports the number of cumulative (infection) cases for April 7, April 20, and April 28, 2020.

34



●
● ●

●

●

● ● ●
●

●

●

−0.4

−0.2

0.0

0.2

0.4

−5.0 −2.5 0.0 2.5 5.0
weeks away from announcement

co
ef

fic
ie

nt
s

A. Rich Group Mobility

●

● ● ●
●

●
●

●
●

●
●

−0.4

−0.2

0.0

0.2

0.4

−5.0 −2.5 0.0 2.5 5.0
weeks away from announcement

co
ef

fic
ie

nt
s

A. Poor Group Mobility

● ● ●
●

●

● ●

●
●

●

●

−1.0

−0.5

0.0

0.5

1.0

−5.0 −2.5 0.0 2.5 5.0
weeks away from announcement

co
ef

fic
ie

nt
s

B. Rich Group Cases

●

● ●

●

● ● ●

●

●
●

●

−1.0

−0.5

0.0

0.5

1.0

−5.0 −2.5 0.0 2.5 5.0
weeks away from announcement

co
ef

fic
ie

nt
s

c. Poor Group Cases

● ●
● ●

●

●
●

●

● ●
●

−2

0

2

4

−5.0 −2.5 0.0 2.5 5.0
weeks away from announcement

IV
 c

oe
ffi

ci
en

ts

C. Rich Group Cases

●

● ●
●

●

●

●

●

● ●

●

−2

0

2

4

−5.0 −2.5 0.0 2.5 5.0
weeks away from announcement

IV
 c

oe
ffi

ci
en

ts

C. Poor Group Cases

Figure 9: The Effects of Weather Shocks and Mandates on Mobility and COVID-19

Notes: Panel A uses log of mobility as the dependent variable, whereas Panels B and C use the log of weekly new cases. Panel

A plots the coefficients on the interaction term between the county poverty group, weeks away from the mandate, and weather

shock indicators as depicted in specification 1, where the figures on the left and right plot the estimates on κj and λj , respectively.

Panel B plots the reduced form effect of stay-at-home mandate coupled with the extreme weather shock by plotting the estimates

of κj and λj after estimating equation 2 on the left and right side of Panel B, respectively. Panel C shows the IV results for rich

(left) and poor (right) county groups by plotting the estimates of κj and λj in specification 3.
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Tables

Table 1: Non-Pharmaceutical Intervention (NPI) Roll-Out by State

State SaH-Announce SaH-Implem. Emergency School Restaurant NE-Business Gathering
1 Alaska 3/27/20 3/28/20 03/11/20 03/16/20 03/17/20 03/24/20 03/28/20
2 Alabama 4/3/20 4/4/20 03/13/20 03/19/20 03/20/20 03/20/20
3 Arkansas 03/11/20 03/17/20 03/19/20
4 Arizona 3/30/20 3/31/20 03/11/20 03/16/20 03/20/20
5 California 3/19/20 3/19/20 03/04/20 03/19/20 03/15/20 03/11/20 03/19/20
6 Colorado 3/25/20 3/26/20 03/10/20 03/23/20 03/17/20 03/19/20 03/26/20
7 Connecticut 3/22/20 3/23/20 03/10/20 03/17/20 03/16/20 03/12/20 03/23/20
8 Delaware 3/24/20 3/24/20 03/13/20 03/16/20 03/16/20 03/16/20 03/24/20
9 Florida 4/1/20 4/3/20 03/09/20 03/16/20 03/17/20 04/03/20 03/30/20

10 Georgia 4/1/20 4/3/20 03/14/20 03/18/20 03/24/20 03/24/20
11 Hawaii 3/23/20 3/25/20 03/04/20 03/23/20 03/17/20 03/16/20 03/25/20
12 Iowa 03/09/20 04/03/20 03/17/20 03/17/20
13 Idaho 3/25/20 3/25/20 03/13/20 03/23/20 03/25/20 03/25/20 03/25/20
14 Illinois 3/20/20 3/21/20 03/09/20 03/17/20 03/16/20 03/13/20 03/21/20
15 Indiana 3/23/20 3/25/20 03/06/20 03/19/20 03/16/20 03/12/20 03/24/20
16 Kansas 3/28/20 3/30/20 03/12/20 03/18/20 03/17/20
17 Kentucky 3/25/20 3/26/20 03/06/20 03/16/20 03/16/20 03/19/20 03/26/20
18 Louisiana 3/22/20 3/23/20 03/11/20 03/16/20 03/17/20 03/13/20 03/23/20
19 Massachusetts 3/23/20 3/24/20 03/10/20 03/17/20 03/17/20 03/13/20 03/24/20
20 Maryland 3/30/20 3/30/20 03/05/20 03/16/20 03/16/20 03/16/20 03/23/20
21 Maine 3/31/20 4/2/20 03/15/20 03/16/20 03/18/20 03/18/20 03/25/20
22 Michigan 3/23/20 3/24/20 03/10/20 03/16/20 03/16/20 03/13/20 03/23/20
23 Minnesota 3/25/20 3/28/20 03/13/20 03/18/20 03/17/20
24 Missouri 4/6/20 4/6/20 03/13/20 03/23/20 03/17/20 03/23/20
25 Mississippi 4/1/20 4/3/20 03/14/20 03/20/20 03/24/20 03/24/20 03/31/20
26 Montana 3/23/20 3/28/20 03/12/20 03/16/20 03/20/20 03/24/20 03/28/20
27 North Carolina 3/27/20 3/30/20 03/10/20 03/16/20 03/17/20 03/14/20 03/30/20
28 North Dakota 03/13/20 03/16/20 03/20/20
29 Nebraska 03/13/20 04/03/20 03/19/20 03/16/20
30 New Hampshire 3/27/20 3/28/20 03/13/20 03/16/20 03/16/20 03/16/20 03/28/20
31 New Jersey 3/21/20 3/21/20 03/09/20 03/18/20 03/16/20 03/16/20 03/21/20
32 New Mexico 3/23/20 3/24/20 03/11/20 03/16/20 03/16/20 03/16/20 03/24/20
33 Nevada 4/1/20 4/1/20 03/12/20 03/16/20 03/17/20 03/19/20 03/21/20
34 New York 3/20/20 3/22/20 03/07/20 03/18/20 03/16/20 03/13/20 03/20/20
35 Ohio 3/23/20 3/24/20 03/09/20 03/17/20 03/15/20 03/12/20 03/24/20
36 Oklahoma 03/15/20 03/17/20 03/25/20 03/24/20 03/26/20
37 Oregon 3/20/20 3/23/20 03/08/20 03/16/20 03/17/20 03/16/20
38 Pennsylvania 3/23/20 3/23/20 03/06/20 03/16/20 03/17/20 03/16/20 03/23/20
39 Rhode Island 3/28/20 3/28/20 03/09/20 03/16/20 03/16/20 03/17/20
40 South Carolina 4/6/20 4/7/20 03/13/20 03/16/20 03/18/20 03/18/20
41 South Dakota 03/13/20 03/16/20 04/06/20
42 Tennessee 3/30/20 4/1/20 03/12/20 03/20/20 03/23/20 03/23/20 04/01/20
43 Texas 3/31/20 4/2/20 03/13/20 03/23/20 03/20/20 03/20/20
44 Utah 3/29/20 4/1/20 03/06/20 03/16/20 03/18/20 03/16/20
45 Virginia 3/30/20 3/30/20 03/12/20 03/16/20 03/17/20 03/15/20
46 Vermont 3/25/20 3/25/20 03/13/20 03/18/20 03/17/20 03/13/20 03/25/20
47 Washington 3/23/20 3/23/20 02/29/20 03/17/20 03/16/20 03/11/20 03/25/20
48 Wisconsin 3/24/20 3/25/20 03/12/20 03/18/20 03/17/20 03/17/20 03/25/20
49 West Virginia 3/23/20 3/24/20 03/16/20 03/16/20 03/17/20 03/24/20
50 Wyoming 03/13/20 03/16/20 03/19/20 03/20/20

Notes: Author’s search and Ortiz and Hauck (2020) for stay-at-home announcement date, Mervosh, Lu and
Swales (2020) for stay-at-home implementation and Gupta, Nguyen, Rojas, Raman, Lee, Bento, Simon and
Wing (2020) for the other categories. SaH refers to stay-at-home mandate and NE-Business refers to non-
essential business closures.
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Table 2: Summary Statistics

Sample
Variable Mean S.D.
Total Cases on March 11, 2020 (per county) 0.42 5.55
Total Cases March 23, 2020 (per county) 13.83 137.27
Total Cases April 7, 2020 (per county) 126.07 948.82
Total Cases April 20, 2020 (per county) 249.30 1734.36
Total Cases April 28, 2020 (per county) 323.16 2128.89
Total Deaths on March 11, 2020 (per county) 0.01 0.48
Total Deaths March 23, 2020 (per county) 0.17 2.03
Total Deaths April 7, 2020 (per county) 4.02 39.31
Total Deaths April 20, 2020 (per county) 11.98 109.37
Total Deaths April 28, 2020 (per county) 17.92 168.51
Log of Population Density 3.74 1.75
Unemployment Rate 4.44 1.81
Percent Less than High School 13.77 6.42
Percent over 55 0.33 0.06
Percent Black over 55 0.02 0.04
Percent on Poverty 16.23 6.44
Total Number of Coronavirus Tests 161,343 432,220
Stay-at-Home Mandate (Announcement) 0.31 0.46
Emergency Declaration 0.50 0.50
Restaurant and Bar Restriction 0.39 0.49
Non-Essential Business Restriction 0.38 0.49
Restriction on Large Gathering 0.18 0.39
Average Temperature (in Fahrenheit) 46.42 12.88
Precipitation (in inches) 0.10 0.13
Weather Shock (Proportion) 0.13 0.34

Notes: The sample is a balanced panel of weekly observations from 3,092 US counties starting from January
22–April 28 (14 weeks), 2020 with a total of N=43,288 county/week observations.
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Table 3: Mobility, Mandates and Weather Shocks (First Stage)

Dependent variable:
log of Mobility log of Mobility

(1) (2) (3) (4) (5) (6)

-5 weeks × Rich × I(min < Q25) −0.017 −0.017 −0.014 −0.013 −0.014 −0.014
(0.014) (0.014) (0.014) (0.014) (0.014) (0.014)

-4 weeks × Rich × I(min < Q25) 0.006 0.006 0.009 0.010 0.013 0.014
(0.020) (0.020) (0.020) (0.020) (0.020) (0.020)

-3 weeks × Rich × I(min < Q25) 0.026 0.026 0.023 0.023 0.019 0.019
(0.026) (0.026) (0.026) (0.026) (0.026) (0.026)

-2 weeks × Rich × I(min < Q25) 0.040∗ 0.040∗ 0.043∗ 0.043∗ 0.044∗∗ 0.044∗∗

(0.022) (0.022) (0.022) (0.022) (0.022) (0.022)
-1 week × Rich × I(min < Q25) −0.023 −0.023 −0.025 −0.025 −0.028 −0.027

(0.028) (0.028) (0.028) (0.029) (0.029) (0.029)
0 week × Rich × I(min < Q25) −0.150∗∗∗ −0.151∗∗∗ −0.150∗∗∗ −0.149∗∗∗ −0.153∗∗∗ −0.145∗∗∗

(0.034) (0.034) (0.034) (0.035) (0.035) (0.035)
1 week × Rich × I(min < Q25) −0.159∗∗∗ −0.159∗∗∗ −0.165∗∗∗ −0.164∗∗∗ −0.166∗∗∗ −0.155∗∗∗

(0.057) (0.057) (0.057) (0.057) (0.057) (0.057)
2 weeks × Rich × I(min < Q25) −0.194∗∗∗ −0.194∗∗∗ −0.196∗∗∗ −0.195∗∗∗ −0.189∗∗∗ −0.177∗∗∗

(0.061) (0.061) (0.061) (0.061) (0.062) (0.062)
3 weeks × Rich × I(min < Q25) −0.147∗∗∗ −0.147∗∗∗ −0.151∗∗∗ −0.150∗∗∗ −0.151∗∗∗ −0.141∗∗∗

(0.040) (0.040) (0.040) (0.040) (0.040) (0.040)
4 weeks × Rich × I(min < Q25) −0.095∗∗∗ −0.095∗∗∗ −0.099∗∗∗ −0.099∗∗∗ −0.107∗∗∗ −0.104∗∗∗

(0.034) (0.034) (0.034) (0.034) (0.033) (0.033)
5 weeks × Rich × I(min < Q25) 0.005 0.005 −0.0001 −0.00000 −0.005 0.001

(0.026) (0.026) (0.026) (0.026) (0.026) (0.026)
-5 weeks × Poor × I(min < Q25) 0.029 0.029 0.030 0.030 0.031 0.029

(0.024) (0.024) (0.024) (0.024) (0.024) (0.024)
-4 weeks × Poor × I(min < Q25) −0.033 −0.032 −0.032 −0.032 −0.031 −0.032

(0.022) (0.022) (0.022) (0.022) (0.022) (0.022)
-3 weeks × Poor × I(min < Q25) −0.019 −0.019 −0.019 −0.016 −0.015 −0.018

(0.020) (0.020) (0.020) (0.020) (0.020) (0.020)
-2 weeks × Poor × I(min < Q25) −0.037 −0.034 −0.033 −0.030 −0.030 −0.034

(0.025) (0.025) (0.025) (0.025) (0.026) (0.026)
-1 week × Poor × I(min < Q25) 0.018 0.014 0.014 0.016 0.017 0.013

(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)
0 week × Poor × I(min < Q25) −0.029 −0.027 −0.024 −0.028 −0.027 −0.019

(0.050) (0.050) (0.050) (0.050) (0.051) (0.050)
1 week × Poor × I(min < Q25) −0.059 −0.061 −0.060 −0.059 −0.058 −0.046

(0.042) (0.042) (0.042) (0.042) (0.042) (0.042)
2 weeks × Poor × I(min < Q25) −0.140∗∗ −0.141∗∗ −0.139∗∗ −0.141∗∗ −0.141∗∗ −0.133∗∗

(0.065) (0.065) (0.065) (0.065) (0.065) (0.065)
3 weeks × Poor × I(min < Q25) −0.088∗∗ −0.089∗∗∗ −0.088∗∗ −0.088∗∗ −0.088∗∗ −0.079∗∗

(0.034) (0.034) (0.034) (0.034) (0.035) (0.034)
4 weeks × Poor × I(min < Q25) −0.054∗ −0.055∗ −0.055∗ −0.052∗ −0.051∗ −0.045

(0.030) (0.030) (0.030) (0.030) (0.030) (0.030)
5 weeks × Poor × I(min < Q25) 0.0004 0.001 0.001 −0.002 −0.002 0.011

(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)

emergency + emergency × rich group X X X X X
restaurant + restaurant × rich group X X X X
business + business × Rich group X X X
gathering + gathering × Rich group X X
density × Week indicator X
F-Stat 10.59 10.62 11.05 10.78 11.19 10.02
Observations 43,288 43,288 43,288 43,288 43,288 43,288

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

All model specifications control for the county fixed effects, week fixed effects, logarithm of state specific COVID-
19 testing, and the interaction terms between the rich county group and a) week fixed effects and b) the logarithm
of state specific COVID-19 testing. Additionally, Column (2) controls for an indicator of whether a state of
emergency was declared in county c at time t and the interaction of this indicator with rich county group.
Similarly, Column (3) controls for an indicator representing restaurant ban and its interaction with rich county
group. Columns (4) and (5) include indicators representing business closure and bans on large gathering along
with their interactions with the rich county group. Next, Column (6) adds the interaction between week
indicators and county level density. To account for within county correlation, standard errors are clustered at
the county level.
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Table 4: Mobility, Mandates and Weather Shocks (IV Estimates)

Dependent variable:
log of Cases log of Cases

(1) (2) (3) (4) (5) (6)

-5 weeks × Rich × I(min < Q25) 0.278 0.279 0.358∗∗ 0.337∗ 0.336∗ 0.334∗

(0.177) (0.177) (0.179) (0.181) (0.179) (0.173)
-4 weeks × Rich × I(min < Q25) 0.529∗∗ 0.529∗∗ 0.365 0.328 0.304 0.254

(0.266) (0.266) (0.259) (0.258) (0.256) (0.236)
-3 weeks × Rich × I(min < Q25) 0.240 0.239 0.158 0.137 0.072 0.039

(0.247) (0.247) (0.242) (0.240) (0.232) (0.215)
-2 weeks × Rich × I(min < Q25) 0.083 0.093 0.026 0.002 −0.047 −0.079

(0.257) (0.260) (0.251) (0.250) (0.243) (0.227)
-1 week × Rich × I(min < Q25) −0.216 −0.220 −0.188 −0.234 −0.311 −0.289

(0.280) (0.279) (0.280) (0.282) (0.280) (0.271)
0 week × Rich × I(min < Q25) −0.707∗ −0.710∗ −0.717∗ −0.787∗ −0.960∗∗ −0.813∗∗

(0.405) (0.405) (0.414) (0.426) (0.418) (0.406)
1 week × Rich × I(min < Q25) −0.880∗ −0.880∗ −0.960∗∗ −1.010∗∗ −0.486 −0.477

(0.485) (0.485) (0.480) (0.479) (0.483) (0.464)
2 weeks × Rich × I(min < Q25) 1.436∗∗ 1.436∗∗ 1.656∗∗∗ 1.627∗∗ 1.787∗∗∗ 1.574∗∗∗

(0.637) (0.637) (0.643) (0.638) (0.626) (0.595)
3 weeks × Rich × I(min < Q25) 2.040∗∗∗ 2.039∗∗∗ 2.316∗∗∗ 2.288∗∗∗ 2.374∗∗∗ 2.159∗∗∗

(0.671) (0.671) (0.678) (0.673) (0.663) (0.628)
4 weeks × Rich × I(min < Q25) 1.844∗∗∗ 1.844∗∗∗ 2.234∗∗∗ 2.221∗∗∗ 2.417∗∗∗ 2.202∗∗∗

(0.697) (0.697) (0.694) (0.694) (0.700) (0.666)
5 weeks × Rich × I(min < Q25) 1.675∗∗ 1.675∗∗ 1.970∗∗∗ 1.978∗∗∗ 2.245∗∗∗ 1.990∗∗∗

(0.729) (0.729) (0.738) (0.738) (0.748) (0.705)
-5 weeks × Poor × I(min < Q25) 0.190 0.190 0.214 0.210 0.249 0.171

(0.152) (0.152) (0.151) (0.151) (0.152) (0.143)
-4 weeks × Poor × I(min < Q25) −0.565∗∗∗ −0.564∗∗∗ −0.578∗∗∗ −0.573∗∗∗ −0.572∗∗∗ −0.295∗

(0.212) (0.212) (0.215) (0.215) (0.211) (0.160)
-3 weeks × Poor × I(min < Q25) −0.440∗∗ −0.440∗∗ −0.452∗∗ −0.448∗∗ −0.454∗∗ −0.353∗∗

(0.185) (0.185) (0.190) (0.189) (0.185) (0.147)
-2 weeks × Poor × I(min < Q25) −0.178 −0.186 −0.199 −0.198 −0.210 −0.104

(0.139) (0.144) (0.143) (0.143) (0.143) (0.137)
-1 week × Poor × I(min < Q25) 0.173 0.174 0.189 0.200 0.185 0.230

(0.224) (0.225) (0.227) (0.233) (0.235) (0.232)
0 week × Poor × I(min < Q25) −0.473∗ −0.472∗ −0.405 −0.405 −0.435∗ −0.397

(0.263) (0.263) (0.261) (0.262) (0.264) (0.255)
1 week × Poor × I(min < Q25) −1.271∗∗∗ −1.273∗∗∗ −1.232∗∗∗ −1.229∗∗∗ −1.298∗∗∗ −1.365∗∗∗

(0.460) (0.461) (0.453) (0.453) (0.465) (0.471)
2 weeks × Poor × I(min < Q25) −0.738 −0.738 −0.734 −0.740 −0.727 −0.582

(0.859) (0.859) (0.857) (0.859) (0.872) (0.787)
3 weeks × Poor × I(min < Q25) −0.210 −0.210 −0.201 −0.204 −0.196 −0.039

(0.517) (0.517) (0.515) (0.516) (0.520) (0.464)
4 weeks × Poor × I(min < Q25) −0.410 −0.411 −0.405 −0.412 −0.421 −0.177

(0.664) (0.664) (0.663) (0.664) (0.672) (0.608)
5 weeks × Poor × I(min < Q25) 0.302 0.302 0.311 0.305 0.353 0.558

(0.766) (0.766) (0.761) (0.762) (0.752) (0.609)

emergency + emergency × rich group X X X X X
restaurant + restaurant × rich group X X X X
business + business × Rich group X X X
gathering + gathering × Rich group X X
density × Week indicator X
Observations 43,288 43,288 43,288 43,288 43,288 43,288

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

All model specifications control for the county fixed effects, week fixed effects, logarithm of state specific COVID-
19 testing, and the interaction terms between the rich county group and a) week fixed effects and b) the logarithm
of state specific COVID-19 testing. Additionally, Column (2) controls for an indicator of whether a state of
emergency was declared in county c at time t and the interaction of this indicator with rich county group.
Similarly, Column (3) controls for an indicator representing restaurant ban and its interaction with rich county
group. Columns (4) and (5) include indicators representing business closure and bans on large gathering along
with their interactions with the rich county group. Next, Column (6) adds the interaction between week
indicators and county level density. To account for within county correlation, standard errors are clustered at
the county level.
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Online Appendix:
Coronavirus Infections and Deaths by
Poverty Status: The Effects of Social
Distancing

A Fitting Curves Using the Leave-One-Out Method

This section describes the curve fitting method we use to produce the smooth curves in Figures
4–7. We start with 20 points that are calculated using the non-parametric method described
in Section 3.31 We then employ a local linear estimation that results in a non-parametric fit
that incorporates these 20 points. However, the fit depends on a smoothing parameter. If the
smoothing parameter is very high, the curve becomes the the best fit line of an OLS estimate.
If the smoothing parameter is low, noise increases and the lines starts to move through every
point. Fitting a smooth curve through the 20 points becomes a trade-off between bias (using
high value and producing a very smooth curve) and noise (using a low value). We use a
procedure that minimizes the residual mean squared error (RMSE) from a prediction resulting
from leaving one of the 20 points out when estimating a local regression.

This leave-one-out cross-validation method minimizes the RMSE but is robust to the pos-
sibility of in-sample over fitting. This method works as follows. In the case of 20 points, we
first start with the starting value of the smoothing parameter α1. We use the last 19 points
(excluding the first point) and estimate the local linear model. Then we use this estimation to
predict the value of the first point we left out. The difference between the first (actual point)
and the first (predicted point) contributes to the MSE. We perform similar estimations by ex-
cluding each point of the 20 points and using the resulting 19 to perform local linear regression.
We then perform similar out-of-sample predictions and use the excluded point to calculate the
RMSE. The RMSE for the first value of the starting smoothing parameter α1 is RMSE(α1)

=
∑20

i=1

(xi−x̂α1,i)
2

20
where xi is the actual point observation and x̂α1,i is the prediction of point

i based on local regressions using smoothing parameter α1. We next repeat this for tightly
packed values of the smoothing parameter α ∈ [α, ᾱ], which gives a series of RMSE(α)α. We
then choose the minimum RMSE and its associated smoothing parameter α̂.

31This method ranks all US counties according to percentage of individuals living under the poverty level and
then forms 20 county-groups of roughly equal population size. Each group is an observation in Figures 4–7.
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B Results Based on 25 County Groupings

We replicate our descriptive findings based on 20 county-groups, originally presented in Figures
4 and 5, using 25 county-groups instead. The results, shown in Figures B.1 and B.2, are very
similar to the patterns shown in Figures 4 and 5, suggesting that the descriptive patterns are
robust to alternative groupings of counties.

Figure B.1: SARS-CoV-2 Confirmed Infections by Poverty Percentile Based on 25
County Groups

Notes: The figure replicates Figure 4 except that we form 25 county-group bins based on the poverty rate.
The source of data is USAFacts, as of April 28, 2020. We report the number of cumulative (infection) cases
for March 11, March 23, April 7, April 20, and April 28 in 2020 for 25 county-groups ranked by poverty rate
percentile. The curves are fitted using a smoothing method based on local linear regressions as described in
Appendix A.
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Figure B.2: SARS-CoV-2 Confirmed Deaths by Poverty Percentile Based on 25
County Groups

Notes: The figure replicates Figure 5 except that we form 25 county-group bins based on the poverty rate. The
source of data is USAFacts, as of April 28, 2020. We report the number of cumulative deaths due to COVID-19
for March 11, March 23, April 7, April 20, and April 28 in 2020 for 25 county-groups ranked by poverty rate
percentile. The curves are fitted using a smoothing method based on local linear regressions as described in
Appendix A.
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C Removing County Observations from the State of New

York

From the descriptive analysis in Section 2.3 it is obvious that the median county-group is an
outlier, not following the U-shape. This specific county-group contains Queens in the state
of New York. Queens reported the highest infection and death rates in the early days of the
pandemic.32 Given that this county was hit especially hard, we next repeat our descriptive
analysis without any county observations from the state of New York. In addition, we re-
estimate specification 1, 2, and 3 with this reduced sample in order to check whether our
results are driven by the dramatic surge in COVID-19 cases in New York during the onset of
the pandemic.

The descriptive analysis, shown in Figures C.1 and C.2, are similar to the main analysis in
Figures 4 and 5 of Section 2.3 in the main paper. Similarly, the estimation results concerning
the interaction coefficients presented in Figure C.3 are very similar to the main results in Figure
9, again suggesting that our findings are robust with respect to observations from the state of
New York.

32See for instance a Time article from April 5, 2020: https://time.com/5815820/
data-new-york-low-income-neighborhoods-coronavirus/

43

https://time.com/5815820/data-new-york-low-income-neighborhoods-coronavirus/
https://time.com/5815820/data-new-york-low-income-neighborhoods-coronavirus/


Figure C.1: SARS-CoV-2 Confirmed Infections by Poverty Percentile Excluding New
York

Notes: The figure replicates Figure 4 except that we drop counties from the state of New York from the analysis.
The source of data is USAFacts, as of April 28, 2020. We report the number of cumulative (infection) cases
for March 11, March 23, April 7, April 20, and April 28 in 2020 for 20 county-groups (excluding counties from
New York) ranked by poverty rate percentile. The curves are fitted using a smoothing method based on local
linear regressions as described in Appendix A.
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Figure C.2: SARS-CoV-2 Confirmed Deaths by Poverty Percentile Excluding New
York

Notes: The figure replicates Figure 5 except that we drop counties from the state of New York from the
analysis. The source of data is USAFacts, as of April 28, 2020. We report the number of cumulative deaths due
to COVID-19 for March 11, March 23, April 7, April 20, and April 28 in 2020 for 25 county-groups (excluding
counties from New York) ranked by poverty rate percentile. The curves are fitted using a smoothing method
based on local linear regressions as described in Appendix A.
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C. Poor Group Cases

Figure C.3: The Effects of Weather Shocks and Mandate on Mobility and COVID-19

Notes: The figure is structured in a similar way as in Figure 9 but excludes New York from the analysis. Panel A uses log of

mobility as the dependent variable, whereas Panels B and C use the log of weekly new cases. Panel A plots the coefficients on

the interaction term between the county poverty group, weeks away from the mandate, and weather shock indicators as depicted in

specification 1, where the figures on the left and right plot the estimates on κj and λj , respectively. Panel B plots the reduced form

effect of stay-at-home mandate coupled with the extreme weather shock by plotting the estimates of κj and λj after estimating

equation 2 on the left and right side of Panel B, respectively. Panel C shows the IV results for rich (left) and poor (right) county

groups by plotting the estimates of κj and λj in specification 3.
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