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Abstract

Under regularity and boundary conditions which ensure an interior maxi-

mum, I show that there is a unique critical point which is a global maximum if

and only if the Hessian determinant of the negated objective function is strictly

positive at any critical point. Within the large class of Morse functions, and

subject to boundary conditions, this local and ordinal condition generalizes

strict concavity, and is satis�ed by nearly all strictly quasiconcave functions.

The result also provides a new uniqueness theorem for potential games.
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1 Introduction

In many applied theory models, the analyst is interested in minimal conditions under

which an optimization problem has a unique interior maximum. Once existence and

interiority are established, the standard assumption which guarantees uniqueness is

that the objective function is strictly quasiconcave, but this is not necessary. Under

conditions which guarantee existence and interiority, and a mild regularity condition,

I show that a necessary and su¢ cient condition for a function to have a unique

critical point which is also a maximum is that the Hessian determinant of the negated

objective function is strictly positive at any critical point. One especially notable

aspect of this condition is that it is a local condition, unlike strict quasiconcavity

which is a global property of the function.

The fact that the maximizer is also the unique critical point makes it relevant for

potential games (see Monderer and Shapley, 1996). It is well-known that games with

a strictly concave potential function have a unique equilibrium since these functions

have at most one critical point which must be a maximum (see, for example, Ney-

man, 1997). Theorem 2 provides conditions under which strict concavity may be

signi�cantly weakened while still guaranteeing a unique Nash equilibrium.

The analysis relies on index theory, and the Poincaré-Hopf theorem in particular

(e.g., Milnor, 1965; p. 35). Index theory has been applied fruitfully in general

equilibrium theory, game theory, and equilibrium systems more generally.1 In this

note I demonstrate its usefulness in unconstrained optimization.

2 The Main Result

The main concern in this note is to prove and explore a few implications of the

following Theorem, especially the second part. The result is proved in the next

section.

Theorem 1 Let f : A ! R be a Morse function de�ned on a contractible and com-
pact smooth manifold A � Rn. If A has boundary, then assume that rf is well-

1A far from exhaustive list of references includes Dierker (1972), Varian (1974), and Kehoe (1985),
for general equilibrium, Kolstad and Mathiesen (1987) and Hefti (2016) for game theory, and Dohtani
(1998) and Christensen and Cornwell (2017) for equilibrium systems more generally.
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de�ned2 and inward pointing on the boundary.

1. The number of critical points in A is �nite and odd, and at least one of them is

a maximum.

2. f has a unique critical point in A which is a global maximum if and only if

rf (x�) = 0 ) det
�
�D2f (x�)

�
> 0: (1)

Before addressing some of the less familiar assumptions of the Theorem, I will

review some well-known optimization concepts to help put criterion (1) in context

(e.g., Simon and Blume, 1994). A critical point x� of a smooth function f is a

point where the gradient vanishes, rf (x�) = 0: A nondegenerate critical point is a
critical point where the Hessian determinant is nonsingular, det(D2f (x�)) 6= 0:3 Any
interior maximum must be a critical point, and the Hessian at an interior maximum

is negative semide�nite, which implies det (�D2f (x�)) � 0: If f is globally strictly
concave, then a critical point x� is a global maximum. A su¢ cient condition for

global concavity is that the Hessian of f is everywhere negative de�nite, and this

requires det (�D2f (x)) > 0 for all x 2 A: The function f (x) = �x4 provides a
convenient reminder that negative de�niteness is not necessary for a maximum or

strict concavity.

However, in the class ofMorse functions� smooth real-valued functions on a mani-

fold A whose critical points are all nondegenerate� the condition det (�D2f (x�)) > 0

is necessary.4 The class of Morse functions is large� it is well-known that Morse

functions are generic in that they form an open, dense subset of all smooth functions

A! R: In this sense, con�ning attention to the class of Morse functions is not very
restrictive.

Clearly, the class of functions which satisfy criterion (1) contains the class of

strictly concave Morse functions. Verifying criterion (1) is also simpler in the sense

that it requires only information about the Hessian determinant and not the other

2A simple way to make this precise is to assume f is de�ned on an open set X � Rn, where
A � X:

3Alternative and slightly more appropriate notation for the Hessian in this setting would be
Dxrf (x) ; which emphasizes that the Hessian is the Jacobian of rf (x) : However, D2f (x) is the
more common notation, so I follow that convention here.

4Note that for multivariate functions this does not rule out that the Hessian may be negative
semide�nite at x�:
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leading principal minors. Perhaps more signi�cantly, in contrast to strictly concave

Morse functions, condition (1) requires that det(�D2f (x)) > 0 only at any critical

point x� rather than for all x 2 A; so this is a local condition which, in combination
with information on how the function behaves at its boundary, is su¢ cient to draw

conclusions about the function�s global characteristics.

The other assumptions of Theorem 1 are that A is a contractible, compact, and

smooth manifold; and that the gradient points inward on the boundary of A: Since

every convex set in Rn is contractible, the assumption that A is contractible, compact,
and smooth manifold could be replaced with the standard assumption that A � Rn

is convex and compact as long as the boundary of A is piecewise smooth. Loosely

speaking, a contractible set is one that can be continuously shrunk to a point. In one

dimension, only the closed interval is a contractible and compact manifold.5 In higher

dimensions, manifolds that are di¤eomorphic to the unit disk fx 2 Rnj
P
x2i � 1g are

contractible, compact, and smooth. By a smoothing argument along the lines of

Section 3.1 in Christensen and Cornwell (2017), Theorem 1 also applies to manifolds

with �corners� which often arise in applications, such as the solid rectangle, the

simplex, or any other convex set with a piecewise smooth boundary.

As for the assumption that the gradient points inward on the boundary, recall

that the gradient points in the direction of steepest ascent. Thus, this assumption

means that from any point on the boundary, there is a way to move to the interior

such that the function�s value increases. Hence, a maximum cannot exist on the

boundary of A. Formally, say that rf is inward pointing on @A if for any �x 2 @A;
there is some "0 > 0 such that �x+ "rf (�x) 2 int (A) for all 0 < " < "0: We say that
rf is outward pointing if �rf is inward pointing.
The boundary condition is often satis�ed under standard conditions which ensure

an interior maximum, as I now demonstrate in the following example.

Example 1 Consider the problem

max
x2X

f (x) ;

where X � Rn and f is a Morse function. Suppose there is a (solid) rectangle

A = fx 2 Xjai � xi � bi with ai; bi 2 R; i = 1; :::; ng
5The circle is a compact manifold without boundary, but it is not contractible.
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such that for any x 2 A; and i = 1; :::; n;

@f (x)

@xi
> 0 if xi = ai and (2)

@f (x)

@xi
< 0 if xi = bi: (3)

If X = Rn+; as is typical in industrial organization settings, then we usually have
ai = 0, and the existence of an upper bound bi implies that the optimal value of any

choice variable in A is not in�nite.

The rectangle A is a compact and contractible manifold with boundary, and condi-

tions (2) and (3) ensure that the boundary condition is satis�ed.6 The smoothing ar-

gument in Section 3.1 of Christensen and Cornwell (2017) implies that we can �round

o¤�the corners of A and treat it as a smooth manifold. Theorem 1 then states that,

on the domain A; there is a unique maximizer x� 2 int(A) which is also the unique
critical point if and only if rf (x�) = 0 implies det (�D2f (x�)) > 0:7 To guaran-

tee a strictly positive determinant, one can impose �strict mean positive dominance�

on the Hessian of the negated objective function, �f , an economically meaningful
restriction which also comes with nice comparative statics properties (Christensen,

2017). �

In the preceding example, a standard and alternative assumption which guarantees

uniqueness is that f is strictly quasiconcave. I now explore the relationship between

strict quasiconcavity and functions which satisfy the conditions of Theorem 1. Let

E = fx� 2 Ajrf (x�) = 0g be the set of critical points of the function f : A! R:

Lemma 1 Let f : A ! R be a Morse function on a smooth, compact manifold

A � Rn: Then E is �nite.
6Another natural way to de�ne A in such a way that meets the boundary condition is to use an

upper contour set,
A = fx 2 Xjf (x) � c for c 2 R g ;

provided that this upper contour set is contractible and the level curve fx 2 Xjf (x) = cg does not
de�ne a �plateau�where rf(x) = 0 is possible.

7This guarantees a unique maximizer on A; not necessarily on X: To ensure a unique maximum
on X it would be su¢ cient in this case to assume, for all i; @f(x)@xi

> 0 if xi � ai and
@f(x)
@xi

< 0 if
xi � bi:
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Proof. Since det (�D2f (x�)) 6= 0; the Inverse Function Theorem implies rf is one-
to-one in a neighborhood of each x� 2 A: Hence, the critical points are isolated.8

Note that A is compact, so every in�nite subset of A must contain at least one point

of accumulation in A (e.g., Corollary 5.9 in Mendelson, 1990). It follows that E is
�nite since E �A contains only isolated points.

Proposition 1 Let f : A ! R be de�ned on a convex and compact set A � Rn;
and assume that rf (x) is well-de�ned and inward pointing on the boundary of A.
If f is a strictly quasiconcave Morse function then f has a unique global maximizer

x� 2 int(A) where rf (x�) = 0 and det (�D2f (x�)) > 0: Moreover, the number of

critical points is �nite, and, except for the global maximum, no critical point is an

extremum.

Proof. The existence of a unique global and interior maximum x� where rf (x�) = 0
and det (�D2f (x�)) � 0 comes from the boundary condition, Weierstrauss�Theorem,
and strict quasiconcavity. Then det (�D2f (x�)) > 0 follows by the de�nition of

Morse functions. Finiteness follows from Lemma 1.

Let x1 be an arbitrary critical point. Note that x1 2 int(A) by the boundary
condition. x1 cannot be a minimum, because if it were, then there would be an

open ball B (x1; r) � A around x1 with radius r > 0 such that f (x1) � f (y) for any
y 2 B (x1; r) : Since the ball is convex, there would be some y; y0 2 B (x1; r) and
� 2 (0; 1) such that x1 = �y + (1� �) y0: But strict quasiconcavity requires

f (x1) = f (�y + (1� �) y0) > min ff (y) ; f (y0)g ;

which would contradict x1 being a minimum.

If x1 6= x�; then x1 cannot be a maximum. Since f (x�) > f (x1) ; strict quasi-

concavity implies

f (�x1 + (1� �)x�) > f (x1) for any � 2 (0; 1) :

By picking � arbitrarily close to one, we can always �nd a point �x1 + (1� �)x�

arbitrarily close to x1 where the function�s value is higher than it is at x1:

Proposition 1 demonstrates that if the boundary condition is satis�ed, then the

class of functions which satisfy criterion (1) �nearly� contains the class of strictly
8This is also a well-known consequence of the Morse lemma.
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Figure 1: This function is not quasiconcave but is consistent with criterion (1).

quasiconcave Morse functions. The reason for the quali�er �nearly� is that the

critical points of the latter may not be unique. However, these critical points are

not important in the sense that there can only be a �nite number of them and they

cannot be local extrema.

In the other direction, the class of functions which satisfy criterion (1) is larger

than the class of strictly quasiconcave Morse functions with a unique critical point.

This is illustrated in Figure 1 which depicts the level curves of a function. The

upper contour sets are not convex so the function is not strictly quasiconcave, yet the

function is consistent with criterion (1) and the boundary condition.

Fortunately, however, criterion (1) retains the ordinal quality of quasiconcavity.

The proof of this point also illustrates how the local nature of criterion (1) plays an

important role.

Proposition 2 Let h : R ! R be a smooth, strictly increasing function. Then

f (x) = h (g (x)) meets criterion (1) i¤ g meets criterion (1) :

Proof. If @f(x
�)

@xi
= @h

@g
@g(x�)
@xi

= 0; the typical (i; j) element of the Hessian of f at a

x� is @2f(x�)
@xi@xj

= @h
@g

@2g
@xi@xj

: Then D2f (x�) = @h
@g
D2g (x�), so that det (�D2f (x�)) =�

@h
@g

�n
det(�D2g (x�)):
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3 Proof of Theorem 1

The proof of part 1 borrows heavily from the proof of part 1 of Theorem 2 in Chris-

tensen and Cornwell (2017).

(1) Finiteness follows from Lemma 1.

The gradient �rf de�nes a smooth vector �eld over A which is outward pointing
on the boundary of A: Moreover, the zeros of �rf (i.e., the critical points of f) are
isolated by the same argument as in the proof of Lemma 1. Hence, the Poincaré-Hopf

Theorem states that the index sum is equal to the Euler characteristic of A; which

is +1 since A is a contractible subset of Rn: The index of a critical point is +1 if
det (�D2f (x�)) > 0 and �1 if det (�D2f (x�)) < 0: Since det (�D2f (x�)) 6= 0 and
the index sum is +1; there must be an odd number of critical points.

Finally, by Weierstrauss�Theorem, f attains a maximum: The maximum must

lie in the interior of A since rf is inward pointing on the boundary. Hence, at least
one critical point is a maximum.

(2) Con�ne attention to interior maxima since maxima cannot lie on the boundary.

()) Any interior maximum x� must be a critical point and D2f (x�) must be

negative semide�nite. In general this implies det (�D2f (x�)) � 0; but for Morse

functions we have det (�D2f (x�)) 6= 0:
(() Suppose det (�D2f (x�)) > 0 at each critical point x� of f: The index at

each of these critical points is +1; and since the index sum is +1; there can only be

one. This completes the proof of Theorem 1.

It is now immediate that if in Theorem 1 we everywhere replace det (�D2f (x�))

with det(D2f (x�)) and �rf with rf; then we can replace the word �maximum�
with �minimum.�

4 Application to Potential Games

Consider a game � =
�
N ; (Xi)i2N ; (u

i)i2N
�
where N is the set of players, Xi � Rmi

is the strategy set for player i; and ui : X ! R is player i0s payo¤ function where
X = �i2NX i: The strategy pro�le x� is a pure strategy Nash equilibrium if, for every

player i 2 N; x�i 2 argmax
�
ui
�
xi; x

�
�i
�
jxi 2 Xi

	
:9

9As usual, the notation x�i is a vector containing the strategies of every player but player i:
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A potential function for this game is a function P : X ! R such that for every
player i and every x�i 2 X�i;

P (x0i; x�i)� P (xi; x�i) = ui (x0i; x�i)� ui (xi; x�i) for all x0i; xi 2 Xi:

A potential game is a game that has a potential function. If x� 2 X maximizes the

potential function for a game � then x� is a pure strategy Nash equilibrium of �:

From this point forward, we suppose the strategy sets, (Xi)i2N ; are convex and

compact and that the payo¤ functions, (ui)i2N ; are continuously di¤erentiable. Then

P is a potential for � only if P is continuously di¤erentiable, and

Dxiu
i (xi; x�i) = DxiP (xi; x�i) for every i 2 N:

Given x��i; a necessary condition for x
�
i to be an interior maximum of ui

�
xi; x

�
�i
�

is rui
�
x�i ; x

�
�i
�
= 0: Noting that

rP (x) =

0BBBB@
ru1 (x)
ru2 (x)
...

run (x)

1CCCCA ;

it follows that x� is an interior pure strategy Nash equilibrium only if rP (x�) = 0.
We now can apply Theorem 1 to provide new conditions under which a potential

game has a unique equilibrium. Call � a smooth potential game if it has a smooth

potential function.

Theorem 2 Consider the smooth potential game � with potential P: Suppose the

strategy sets, (Xi)i2N ; are convex and compact, and that the payo¤ functions, (u
i)i2N ;

are continuously di¤erentiable. Further suppose that rP is inward pointing on

the boundary of X: Then � has a unique interior pure strategy Nash equilibrium

if rP (x�) = 0 implies det (�D2P (x�)) > 0:

Proof. Any interior pure strategy Nash equilibrium is a critical point of P: By

Theorem 1, P has a unique critical point on the interior ofX which is also a maximum.

Hence, this critical point is a Nash equilibrium.
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