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Abstract

In discrete time dynamic systems that are locally monotone, we show that

comparative statics are well-behaved if and only if equilibrium is exponen-

tially stable. In addition, subject to boundary conditions but without local

monotonicity, we show that the number of equilibria is �nite and odd, and if

every equilibrium is stable then there is exactly one. The results, which are

applied to best response dynamics and adaptive dynamics, expand the scope

of the correspondence principle to include a relationship between stability and

uniqueness.
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1 Introduction

A model generates meaningful predictions if it excludes certain outcomes from oc-

curring after one of the model�s exogenous variables changes. Comparative statics,

stability, and uniqueness play an essential role in determining whether a model is

meaningful in this way.

In Foundations (1947), Samuelson proposed the stability hypothesis as a way to

discipline comparative statics. Through a series of examples he argued that there

exists an �intimate connection�between stability and comparative statics, a duality

he termed the �correspondence principle.�1

Two criticisms have been levied against Samuelson�s version of the CP. First,

Arrow and Hahn (1971, p. 321) noted that the CP had yet to live up to its intended

purpose since the literature had not shown that stability was necessary for well-

behaved comparative statics in any important class of models. Second, even if stability

were necessary, this may not be su¢ cient to pin down comparative statics predictions

when a model has multiple stable equilibria since the analysis is traditionally done

locally via the Implicit Function Theorem (Kehoe, 1985). Thus, uniqueness is also a

desirable trait for the refutability of an economic model.

Recently, several advances have been made in understanding the scope of the CP.

In a seminal contribution, Echenique (2002) shows that well-behaved comparative

statics and stability are equivalent in globally monotone models. Speci�cally, he

proves the result under an impressively broad class of discrete time dynamics for

globally increasing and self-mapping correspondences de�ned on rectangular regions

of Rn:2 ;3 Kwong (2014) proves a version of this result for narrowly de�ned continuous
time dynamics in smooth, cooperative systems.

We extend these results in two ways. First, we show that equivalence between

stability in discrete time and comparative statics obtains for a broad class of smooth,

locally monotone models which are not necessarily self-mapping and de�ned on pos-

1Samuelson had previously noted such a connection in earlier papers, but Foundations is where
he coined the phrase the �correspondence principle.�

2In fact, the result that ill-behaved comparative statics implies that the equilibrium is not stable
holds in the space of lattices and under a very weak de�nition of stability. The converse requires
the more restricted domain and a stronger de�nition of stability. Compare Theorems 2 and 4 in
Echenique (2002).

3Echenique (2004) allows for non-continuous equilibrium selection functions, but requires more
structure.
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sibly non-rectangular regions of Rn: Our approach is unique in the literature as we
rely on the theory of M�matrices. Second, under weaker conditions we also show

that there is a �nite and odd number of equilibria, and that local stability implies

uniqueness. The converse to the latter result exists in two dimensions if we impose

local monotonicity. Alternatively, a partial converse due to Vives (1999, p. 54) exists

in globally monotone models that map a rectangular region of Rn into itself. In these
cases stability, uniqueness, and comparative statics are essentially equivalent.

Remarkably, the fact that stability implies uniqueness does not require the func-

tion to be self-mapping or monotone. We appeal to Poincaré-Hopf Theorem to es-

tablish this result, subject to regularity and boundary conditions (see Milnor, 1965).4

One bene�t of this approach is that we can simultaneously show that in general there

is an odd and �nite number of equilibria. Dierker (1972) and Hefti (2015) also take

an index theory approach to derive related conclusions in specialized environments.

Our treatment is perhaps more widely applicable since the scope of our analysis in-

cludes any model whose equilibrium is characterized by a system of equations. Also,

while the Poincaré-Hopf Theorem applies to smooth manifolds, we take care to show

that the corners of nonsmooth manifolds can be rounded. Thus, our result applies to

domains which often arise in applications, like rectangles or simplexes.

2 An Illustration

After introducing some general notation we illustrate our results in two dimensions.

Consider the function f : X � T ! Rn where X � Rn and T � Rs are open
sets. The function f is composed of n functions, fi : X � T ! R for i = 1; :::; n:

We assume s = 1 but the results generalize to s �nite. For a given �t 2 T; �x is an

equilibrium if f(�x; �t) = 0: The equilibria of many economic models are characterized

by such a system.

To be concrete, consider a parameterized two player game where each player

i = 1; 2 selects a strategy xi 2 R+:5 Given smooth and pseudoconcave payo¤functions
Fi : R2+ � T ! R; de�ne fi(xi; xj; t) � @Fi

@xi
. Then for a given �t 2 T; interior Nash

equilibria �x are the solution to the system of �rst order conditions f(�x; �t) = 0:

4The key is to show that the index at a stable equilibrium is +1. Interestingly, McLennan (2016)
suggests that there is an intimate connection between stability and an index of +1. Hence, the �nding
that stability implies uniqueness in this paper may be an example of a much deeper principle.

5We focus on interior equilibria so the domain of analysis is the open set R2++:
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(1) S; WB; Bdy

(2) U; not WB; not Bdy

(3) S or U; Ind; Bdy

(4) S or U; Ind; Bdy

(5) S; Ind; Bdy

(6) U; Ind; not Bdy

Figure 1: Types of Regular Equilibria.
Notes: The heavy line is player 2�s best-response and the lighter line is player 1�s, with x2
on the vertical axis and x1 on the horizontal axis. The abbreviations are: S - Stable; U -
unstable; WB - well-behaved comparative statics; Ind - indeterminate comparative statics;
Bdy - boundary condition satis�ed.

x2

x1
0

M1 M2

g2(x1,t)

g1(x2,t)

Figure 2: Best Response Functions.
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Suppose we can write fi(x; t) = �xi+ gi(xj; t), i 6= j; so that gi : R+� T ! R+ is
player i0s best response function. Our concern is how the stability hypothesis relates

to comparative statics and uniqueness. Letting � be the time variable, we study

(simultaneous) best response dynamics so that x(� + 1) = g(x(�); t):

We assume all equilibria are regular. That is, at every equilibrium the Jacobian of

f with respect to x; Dxf(�x; �t); is nonsingular: Non-regular equilibria arise if the best

response functions are tangent to each other. Figure 1 illustrates the neighborhood

around the six types of regular equilibria that can occur in this setting, assuming that

x1 is on the horizontal axis and x2 is on the vertical axis. The stability properties of

each are depicted with arrows and in the notes.

Suppose an increase in t increases the best response of each player. In Figures

1 and 2, this means g1 (the lighter line) shifts to the right and g2 shifts upwards.

Comparative statics are well-behaved if the equilibrium unambiguously shifts to the

northeast as a result. If the best response functions are locally monotone increasing

as in panels (1)-(2) of Figure 1, comparative are well-behaved i¤ equilibrium is stable.

Analytically, the local stability of an equilibrium can be characterized through the

Jacobian of g = (g1; g2) with respect to x;

Dxg(x; t) =

"
0 @g1

@x2
@g2
@x1

0

#
:

Recall that equilibrium is exponentially stable if the spectral radius6 of Dxg, denoted

�(Dxg); is strictly less than one, unstable if �(Dxg) > 1; and may be stable or

unstable if �(Dxg) = 1 (see Elaydi, 2005). By straightforward calculation, �(Dxg) =����� @g1@x2

@g2
@x1

�1=2���� ; which is strictly less than one if and only if ��� @g1@x2

@g2
@x1

��� < 1:
Turning to comparative statics, at regular equilibria it follows from the Implicit

Function Theorem (IFT) applied to f(�x; �t) = 0 that"
d�x1
dt
d�x2
dt

#
| {z }
Dx(�t)

=

"
1 � @g1

@x2

� @g2
@x1

1

#
| {z }

�1

�Dxf(�x;�t)

"
@g2
@t
@g1
@t

#
| {z }
Dtf(�x;�t)

:

The partial (or direct) e¤ect of a parameter change is @gi
@t
for i = 1; 2: Thus, we say

6Letting �1; :::; �n be the eigenvalues of a matrix A; the spectral radius of A is de�ned as �(A) =
max fj�1j ; :::; j�njg :
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that comparative statics are well-behaved if d�xi
dt
� 0 for i = 1; 2 whenever @gi

@t
� 0

for i = 1; 2: Solving the system gives d�xi
dt
= 1

1� @g1
@x2

@g2
@x1

h
@gi
@t
+ @gi

@xj

@gj
@t

i
: It follows that

if best responses are nondecreasing, @gi
@xj

� 0; i 6= j; then comparative statics are

well-behaved i¤ @g1
@x2

@g2
@x1

< 1:

In the knife-edge case, �(Dxg) = 1 i¤
@g1
@x2

@g2
@x1

= 1; but then Dxf(�x; �t) is singular so

that this is not a regular equilibrium. Hence, a regular equilibrium is exponentially

stable i¤ comparative statics are well-behaved. Theorem 1 generalizes this result to

n�dimensional discrete dynamic systems.
Regarding the number of equilibria, Theorem 2 says that if all equilibria within

a contractible manifold M with boundary (e.g., a closed rectangle) are regular and

a boundary condition is satis�ed, then there exists an odd number of equilibria. In

addition, if every equilibrium in M is stable then there is exactly one.

To understand the boundary condition, note that f(x; �t) de�nes a vector �eld over

the strategy space that points in the same direction as best response dynamics. In

this example the boundary condition requires that f points inward on the boundary

of M (or equivalently that �f points outward). In general, a vector �eld f(x; �t)

points inward on the boundary of a manifold M if for any x̂ 2 bdy(M); f(x̂; �t) 6= 0
and there exists "0 > 0 such that for all 0 < " < "0; x̂ + "f(x̂; �t) 2 int(M): In this

two player game, a su¢ cient condition for f to be inward pointing on the rectangle

M =
�
k1;
�k1
�
�
�
k2;
�k2
�
is gi(xj; �t) 2 int(M) for all x 2M and i = 1; 2: That is, each

player i0s optimal choice is bounded below by ki and above by �ki whenever x 2 M:

Equilibria cannot lie on the boundary.

Observe that any rectangle in Figure 2, such as M1 or M2; where f satis�es the

boundary condition must contain an odd number of equilibria; and any such rectangle

that contains a potentially stable equilibrium and at least one other equilibrium must

contain an unstable equilibrium of the type (2) or (6).7 Hence, if all equilibria are

stable and the boundary condition is satis�ed, then equilibrium is unique.

Analytically, subject to regularity and boundary conditions, the Poincaré-Hopf

Theorem says that equilibrium is unique i¤ detDxf(�x; �t) > 0 at all equilibria. In

this case, detDxf(�x; �t) = 1� @g1
@x2

@g2
@x1
; so it is easy to see that if all equilibria are stable

then there is exactly one. In fact, for n = 2 if best responses are both nondecreasing

or both nonincreasing then the converse is also true.

7In fact, we are not restricted to rectangles. These observations are valid for any contractible
space with boundary.
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3 The General Case

Let n be �nite. While comparative statics of an equilibrium �x are carried out via

the IFT applied to f(�x; �t) = 0, the intuition behind comparative statics results is

typically sequential, and this implies some underlying dynamic process (Echenique,

2002). As in the previous illustration, the dynamic process is usually closely tied to

f: To allow for broader application and more transparent proofs, however, we present

our main results in the context of general dynamic systems. We provide additional

applications in the next section where the dynamic system is generated from f:

Letting � be the time variable and t the parameter, let dynamics be given by

x(� + 1) = g(x(�); t); (1)

where g : X�T ! X is smooth. De�ne h(x; t) � x�g(x; t). Given �t 2 T , note that
�x is an equilibrium of (1) if and only if h(�x; �t) = 0: The local behavior of equilibrium

is then determined by the IFT applied to h as long as equilibrium �x is h�regular,
that is, detDxh (�x; �t) 6= 0: In the example from the previous section, h = �f:
In this framework, de�ne the partial e¤ect of an increase in t as Dtg (�x; �t) =�

@g1(�x;�t)
@t

; :::; @gn(�x;
�t)

@t

�T
: This is the initial response of the dynamic system to the in-

crease in t, after which the system evolves according to (1) with parameter t + dt.

Say that comparative statics are well-behaved if the equilibrium does not decrease

with t whenever the partial e¤ect is nonnegative, that is, Dx(�t) � 0 whenever

Dtg (�x(�); t) � 0:8 Finally, we say that dynamics are locally monotone if the Ja-

cobian of g at equilibrium is nonnegative, Dxg(�x; �t) � 0: To see that this captures

monotonicity, note that if Dxg(�x; �t) � 0 for all x 2 X then g generates a monotone

sequence in the sense that ~x(� + 1) � x(� + 1) whenever ~x(�) � x(�):

We need a few technical de�nitions and facts before stating our main results.

The n � n matrix A is called an M-matrix if it can be written A = �I � Y for

some nonnegative matrix Y and scalar � > � (Y ) ; where �(Y ) is the spectral radius

of Y: An M�matrix is a Z�matrix, where a Z�matrix is a square matrix with
nonpositive o¤-diagonal elements. One of the many interesting characterizations

of M�matrices is that if A is a Z�matrix, then it is an M�matrix if and only if
8Throughout the paper, for any matrix A; the the notation A � 0 means that each element of A

is nonnegative. If y is a vector, then y � 0 means each element of y is nonnegative.
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A�1 exists and A�1 � 0 (Plemmons, 1977). This last fact has been known in the

economics literature as early as Debreu and Herstein (1953), but the application to

the correspondence principle appears to be new.

As the illustration in the previous section showed, there is a knife-edge case which

arises when the spectral radius of the Jacobian of the dynamic system equals one.

The following result allows us to e¢ ciently address this issue below.

Lemma 1 Let A be an n � n real matrix and write A = I � Y for Y = I � A: If

�(Y ) � 1; then detA � 0; with strict inequality if �(Y ) < 1: If, in addition, Y is

nonnegative then � (Y ) = 1 implies detA = 0:

Theorem 1 (Correspondence Principle) Consider system (1). Suppose equilib-
rium �x is h�regular and dynamics are locally monotone. Then comparative statics

are well-behaved if and only if equilibrium is exponentially stable.

Proof. To save notation, we drop the arguments of functions but the analysis is
understood to take place at equilibrium.

If �(Dxg) = 1 then equilibrium is not regular. To see this, note that Dxh =

I �Dxg with Dxg � 0 by monotonicity, so detDxh = 0 by Lemma 1.

At regular equilibria, by the IFT

Dx(�t) = �[Dxh]
�1Dth = � [I �Dxg]

�1 [�Dtg] = [I �Dxg]
�1Dtg:

Then Dx(�t) � 0 whenever Dtg � 0 i¤ [I �Dxg]
�1 � 0: By monotonicity, I�Dxg is a

Z�matrix and is anM�matrix i¤�(Dxg) < 1: Thus, [I �Dxg]
�1 � 0 i¤�(Dxg) < 1.

The next result expands the scope of the correspondence principle by showing

that if every equilibrium is exponentially stable then equilibrium is unique. This

result does not require monotonicity, so in this sense the connection between stability

and uniqueness seems to be more fundamental than the one between stability and

comparative statics in Theorem 1. As a collateral result, we also provide conditions

under which there exists an odd and �nite number of equilibria.

Theorem 2 Let M � Rn be a contractible manifold with di¤erentiable boundary
which is contained in a bounded open set X � Rn. Fix �t and let h : X � T ! Rn be
smooth. Let E = f�x 2M jh(�x; �t) = 0g be the set of equilibrium points in M: Suppose

that all equilibria are regular and that h is outward pointing on the boundary of M:

7



1. The number of equilibria in E is �nite and odd.

2. If every �x 2 E is stable then f�xg = E. That is, the equilibrium is unique.

Proof. (1) By the IFT, the zeros of h are isolated since h is one-to-one in a neigh-
borhood of each �x 2 M: Note that E � X and X is certainly contained in a closed

and bounded (and therefore compact) set. It then follows that E must be �nite, since
each point in E is isolated and compact sets satisfy the Bolzano-Weierstrass property
�any in�nite subset must accumulate.

Thus, the Poincaré-Hopf Theorem states that the index sum is equal to the Euler

characteristic of M , which is +1 whenever M is a contractible subset of Rn. When
h is outward pointing on the boundary of M , the index of an equilibrium �x is +1 if

detDxh > 0 and �1 if detDxh < 0: Since detDxh 6= 0 and the index sum is +1;

there must be an odd number of equilibria.

(2) Stability implies �(Dxg) � 1: Since Dxh = I �Dxg; it follows from Lemma

1 that detDxh � 0: Hence, the index at any regular, stable equilibrium is +1, and

since the index sum is +1, equilibrium is unique.

Remark 1 There are �xed point theorems in many settings. If a mapping ' : X ! X

is a contraction mapping (that is, there is a 0 � � < 1 such that for any x1; x2 in the

domain, d('(x1); '(x2)) � �d(x1; x2)) then the Contraction Mapping Theorem (from

the work of S. Banach circa 1920) implies that there is a unique equilibrium.

In our setting, �rst-order local information is given by the Jacobian J�x at each

equilibrium �x, and we have assumed that �(J�x) � 1. In the particular case that

�(J�x) < 1, then it is true that the mapping x 7! J�xx will be a contraction under some

metric (possibly a rather di¤erent metric than the standard metric on Rn). However,
even if this is true at each equilibrium �x, there is no reason to believe that the global

dynamics on X are given by a contraction.

The beauty of the Poincaré-Hopf Theorem is that it allows us to come to these con-

clusions about global behavior using only local assumptions, and a reasonable boundary

assumption.

3.1 Non-smooth Boundaries

A natural setting for applications is to have a space M which is either a simplex or a

rectangular solid. In both these cases the boundary is not smooth, so at �rst glance it
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may seem that Theorem 2 does not apply. Fortunately this is not the case. In e¤ect,

the theorem applies equally well to the case where M is a simplex or is rectangular,

as we will now explain.

There is a standard technique in di¤erential topology that produces a smoothing

of M �a manifold M 0 with di¤erentiable boundary such that M 0 � M � X. We

can construct M 0 in such a way that E 0 = E (where E 0 = f�x 2 M 0jh(�x; �t) = 0g), and
so that h is outward (resp. inward) pointing on the boundary of M 0 if it is outward

(resp. inward) pointing on the boundary of M . Thus we may use M 0 in place of M

in Theorem 2 and our careful construction of M 0 implies that the conclusions of the

theorem hold for M .

The method to de�ne M 0 is the following. Choose a corner point p 2 M (by

which we mean any non-smooth point on the boundary). In a neighborhood U of p,

take a coordinate chart ' that identi�es the boundary of M with the graph of some

piecewise di¤erentiable function y : Rn�1 ! R, such that '(p) = (0; y(0)) 2 Rn�1�R
and '(x) is below this graph for points x 2 U �M which are not on the boundary.

De�ne y(x) as the convolution of y with a bump function  : Rn�1 ! R having
the form

 (x) =

8<:a exp
�
� 1
1�jbxj2

�
; if jbxj < 1

0; otherwise

for some a; b > 0. We state below how to choose b. Choose a such that the integral

of  (x) over R is 1. Notice the graph of y agrees with the graph of y outside a

neighborhood of 0. Let V be the intersection of '(U) with region in Rn�1�R having
last coordinate on or below the graph of y. Then '�1(V ) � U will be the part of M 0

near p. Using a partition of unity, subordinate to a cover of the corner points, we can

de�ne the smoothing M 0. Note that M 0 is contained in int(M), the interior of M .

Having described how to constructM 0, we show that it is possible to make E 0 = E
and h inward pointing on the boundary ofM 0 if it does so on the boundary ofM (the

outward pointing case is analogous). Let d(q; r) be the standard Euclidean distance

between two points q; r 2 Rn. Let d(M;M 0) be de�ned as supq2M infr2M 0 d(q; r).

In the construction of M 0, by choosing b su¢ ciently large (and adjusting a ap-

propriately), we can make d(M;M 0) arbitrarily small. Recall that if h points inward

on the boundary of M then we can take a real-valued function bdy(M) ! R which
at any x̂ 2 bdy(M); has value "0 > 0, and "0 has the property that for 0 < " � "0;

9



Figure 3: Rounding a corner p; U is a neighborhood of p

x̂ + "h(x̂; �t) 2 int(M): Continuity of h allows us to assume that the output "0
changes continuously as x̂ 2 bdy(M) varies. More generally, by considering vectors

x+ "h(x; �t) for some " > 0 and x 2M � int(M 0), we will show that h points inward

on the boundary of M 0, provided d(M;M 0) is su¢ ciently small.

Given " > 0 and x 2 X (and thinking of �t 2 T as �xed), use the short-hand

notation p(x; ") for the vector x+ "h(x; �t). This de�nes a function p : X � R+ ! X

and we note that p is continuous since h is continuous. By assumption, p(x̂; "0) is

contained in the interior of M for any x̂ 2 bdy(M). Moreover, the function p0 :

bdy(M) ! X which assigns p0(x̂) = p(x̂; "0) is continuous. The boundary of M is

compact, so d(p0(x̂); bdy(M)) attains a minimum, say d0. Choose b large enough so

that d(M;M 0) < d0. This guarantees that p0(x̂) 2 int(M 0) for each x̂ 2 bdy(M).
Since int(M 0) is open, "0 varies continuously, and p is continuous, if x̂ 2 bdy(M)

then p(x; ") 2 int(M 0) for x 2 X as long as d(x; x̂) and j"0 � "j are su¢ ciently small
("0 corresponding to the given x̂). Thus, possibly by making d(M;M 0) even smaller,

we can guarantee that for each x 2M � int(M 0), and for x 2 bdy(M 0) in particular,

there is an � > 0 such that p(x; �) 2 int(M 0). As a consequence, h points inward on

bdy(M 0). Note this forces h 6= 0 on M � int(M 0).

Since we have made d(M;M 0) small enough that h is non-zero on the region

M � int(M 0), there are no equilibria in this region. Therefore, E �M 0 and E 0 = E .
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4 Applications

Two important classes of dynamics are adaptive dynamics and best response dynam-

ics. In this section we explore how our results apply in these cases.

Adaptive Dynamics. Adaptive dynamics require that xi increases only if the
function fi is positive. Formally, adaptive dynamics are modeled by the following

set of di¤erence equations:

xi (� + 1) = xi (�) + ki(fi(x (�) ; t)) for i = 1; :::; n; (2)

where ki : R ! R++ is a strictly increasing, smooth function. In matrix-vector

notation this system is written x(� + 1) = x(�) + k(f(x (�) ; t)):

If fi is the marginal net bene�t of increasing an action, then adaptive dynamics say

that the action increases only if the marginal net bene�t is positive. Alternatively,

in a general equilibrium setting adaptive dynamics may be interpreted as a discrete

time version of tâtonnement dynamics. When k is the identity function this is also

a discrete time version of the continuous time dynamics considered in Kwong (2014).

In the context of the general case considered in Section 3, g (x (�) ; t) = x(�) +

k(f(x (�) ; t)) and h(x; t) = �k(f(x; t)): Likewise, the partial e¤ect and Jacobian of
g are, respectively,

Dtg = DkDtf and Dxg = I +DkDxf;

where Dk is the diagonal matrix whose typical (i; i) entry is @ki(fi(�x;�t))
@fi

> 0: Since

Dxh = �DkDxf and Dk 6= 0; it follows that equilibrium is h�regular i¤ it is
f�regular in the sense that detDxf(�x; �t) 6= 0: Moreover, the local behavior of equi-
librium can be determined by applying the IFT to f or h since Dth = �DkDtf

and

Dx(�t) = � [Dxf ]
�1Dtf = � [DkDxf ]

�1DkDtf = � [Dxh]
�1Dth:

Then Theorem 1 applies if we replace the condition that equilibrium is h�regular
with f�regular. Theorem 2 applies if we replace h everywhere with f and assume

f is inward pointing on the boundary (or equivalently that �f is outward pointing).
The �rst part of Theorem 2 follows immediately, but for the second part we need

to show that � (Dxg) � 1 implies det(�Dxf) � 0: We know from the proof that

� (Dxg) � 1 implies detDxh = det(�DkDxf) � 0: Since detDk > 0 it follows that
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det(�Dxf) � 0: Note that the illustration from Section 2 is a special case of adaptive
dynamics where k is the identity function.

To interpret the conditions of Theorem 1 in this context, note that the partial e¤ect

is nonnegative if Dtf(�x; �t) � 0 while local dynamics are monotone if, for i = 1; :::; n;
@fi
@xi
� �1=@ki

@fi
and @fi

@xj
� 0 for i 6= j: These conditions have a natural interpretation

when f(�x; �t) = 0 is the system of �rst order conditions for an interior solution to an

optimization problem. If F (x; t) is the objective function then the partial e¤ect is

nonnegative if F (�x; �t) has increasing di¤erences in (x; t) and dynamics are monotone

if F (�x; �t) is supermodular in x and @fi
@xi
� �1=@ki

@fi
for all i: This interpretation extends

to a strategic setting where F is the payo¤ function of any given player.

Best Response Dynamics. Given our equilibrium system f(x; t) = 0; best

response dynamics require that for any x(�), each xi (� + 1) is chosen to set fi to zero

given x�i (�) = (x1 (�) ; :::; xi�1 (�) ; xi+1 (�) ; :::; xn (�)): The term �best response

dynamics� is motivated by a strategic setting where f is a system of best response

functions, one for each player, as in the example of the Section 2. In a general

equilibrium setting where the vector x represents prices and f is the excess demand

function, this describes a scenario in which, for each market, the price is set to clear

the market assuming that the prices in other markets remain at their levels from the

previous period.

To deal with the possibility that f (x; t) may be implicitly de�ned, transform

f (x; t) locally into an explicitly de�ned system of equations via the IFT as follows.

Fix �t 2 T and de�ne z : X �X � T ! Rn as

z(x(� + 1); x(�); �t) = 0 (3)

where, for each i = 1; :::; n; zi(x(� + 1); x(�); �t) = fi(xi(� + 1);x�i(�); �t).

Note that �x is an equilibrium of system (3) if and only if it is an equilibrium of

the system f (x; t) = 0. Intuitively, in each component equation zi, the values of

x�i (�) are taken as given and are treated as parameters. Noting that X is open and

assuming @fi(�x;�t)
@xi

6= 0 for all i; the IFT implies there exists a unique function g de�ned
in an open neighborhood around �x such that

x (� + 1) = g (x (�) ; �t) :

This is the equivalent of system (1) in the general case, although here it is locally

12



de�ned, as is h(x; t) = x � g(x; t): This is su¢ cient since stability and comparative

statics are local properties.

Let � be the diagonal matrix with diagonal entries (1= @f1
@x1
; 1= @f2

@x2
; :::; 1= @fn

@xn
): By

another application of the IFT, the partial e¤ect and Jacobian of g are, respectively,9

Dtg = ��Dtf and Dxg = I � �Dxf(�x; �t):

Since Dxh = I � Dxg = �Dxf(�x; �t) and det� 6= 0; equilibrium is h�regular i¤
it is f -regular in the sense that detDxf(�x; �t) 6= 0: Moreover, the local behavior of

equilibrium can be determined by applying the IFT to f or h since

Dx(�t) = � [Dxf ]
�1Dtf = � [�Dxf ]

�1 �Dtf = � [Dxh]
�1Dth:

Then Theorem 1 applies if we replace the condition that equilibrium is h�regular
with f�regular. Theorem 2 applies if we replace h everywhere with f ; one may assume
f is inward pointing or outward pointing as is convenient. In either case, the �rst

part of the theorem follows immediately. If f is outward pointing, then the second

part of the theorem also requires the condition that �ni=1
@fi
@xi

> 0 at every equilibrium.

This condition is required to ensure that stability implies detDxf � 0; we know from
the proof that stability implies detDxh = det�Dxf � 0; and if det� > 0 it follows

that detDxf � 0: If f is inward pointing (so that �f is outward pointing), we need
�ni=1 � @fi

@xi
> 0 at every equilibrium since detDxh = det(��) det(�Dxf): In the

illustration from Section 2, f is assumed inward pointing and the diagonal entries of

� are (�1;�1); so stability implies det(�Dxf) = det(�Dxf) � 0; as desired.
To interpret the conditions of Theorem 1, observe that nonnegative partial e¤ects

means �@fi
@t

1
@fi=@xi

� 0 for i = 1; :::; n and dynamics are locally monotone if �@fi=@xj
@fi=@xi

�
0; i 6= j: To see that these conditions are natural, totally di¤erentiate the system

f(�x; �t) = 0 to get

dxi(�t)

dt
= �@fi

@t

1

@fi=@xi
+
X

�@fi=@xj
@fi=@xi

dxj(�t)

dt
; i = 1; :::; n: (4)

The �rst term on the right hand side of this equality is the partial e¤ect on �xi while

9By the IFT, the partial e¤ect is Dtg = �[Dx(�+1)z]�1Dtz: By de�nition, �[Dx(�+1)z]�1 =
�[��1]�1 = �� and Dtz = Dtf . Similarly, the Jacobian is Dxg = �[Dx(�+1)z]�1Dx(�)z; but
given the de�nitions of zi and �; it follows that [Dx(�+1)z]�1 = � and Dx(�)z = Dxf � ��1; so
Dxg = ��(Dxf � ��1) = ��Dxf + I:
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�@fi=@xj
@fi=@xi

describes how the best response changes due to a unit increase in xj: In

matrix notation we can write (4) as Dx(�t) = Dtg + DxgDx(�t); which additively

decomposes the e¤ect of a parameter change into its partial e¤ect and the subsequent

interactions e¤ect as the system adjusts to its new equilibrium. Thus, in a strategic

setting, nonnegative partial e¤ects means that an increase in t does not decrease any

players�best response, and local dynamics are monotone if the players�best response

functions are nondecreasing.

5 Conclusion

This note has proven a correspondence principle using local properties of a discrete

time dynamic system. We also use local properties to show that stability implies

uniqueness even without the monotonicity assumption. The results were shown to

apply to best response dynamics and adaptive dynamics. These �ndings suggest that

perhaps the correspondence principle should be understood to refer to an �intimate

connection�between stability, comparative statics, and uniqueness.
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6 Appendix

Proof of Lemma 1.. Let � (Y ) = �1; :::; �n denote the spectrum of Y and �(A)

the spectrum of A: Since A = I � Y it follows that 1� �i 2 � (A) i¤ �i 2 � (Y ) :
If �i is real-valued, then j�ij � (<)1 implies 1 � �i � (>)0: If �j is complex-

valued, then since the eigenvalues are the roots of a characteristic polynomial with

real coe¢ cients, the conjugate pair of �j is also an eigenvalue. Consequently, 1� �j

and its conjugate pair belong to � (A) : Since the product of a complex number and

its conjugate pair is positive, it follows that detA = �ni=1 (1� �i) � 0; with strict

inequality i¤ �i 6= 1 for i = 1; :::; n:
If Y � 0; then Theorem 1.7.3 in Bapat and Raghavan (1997), which extends some

of the conclusions of the Perron-Frobenius theorem to reducible matrices, implies that

1 is an eigenvalue of Y if � (Y ) = 1: Hence, A possesses a zero eigenvalue. Since

detD 6= 0; detDA = detD detA; and the determinant of a matrix equals the product
of its eigenvalues, this implies A possesses a zero eigenvalue. Hence, detA = 0:
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